\(2^x+2^{3-x}\le9\)
giải các bất phương trình
a) \(27^{2-x}\le9\)
b) \(7^{3-x}< 49\)
c) \(27^{3-x}>9\)
d) \(2^{3-x}< 2^3\)
e) \(27^{3-x^2}< 27^{x+1}\)
a: \(27^{2-x}< =9\)
=>\(\left(3^3\right)^{2-x}< =3^2\)
=>\(3^{6-3x}< =3^2\)
=>6-3x<=2
=>-3x<=-4
=>\(x>=\dfrac{4}{3}\)
b: \(7^{3-x}< 49\)
=>\(7^{3-x}< 7^2\)
=>3-x<2
=>-x<2-3=-1
=>x>1
c: \(27^{3-x}>9\)
=>\(\left(3^3\right)^{3-x}>3^2\)
=>\(3^{9-3x}>3^2\)
=>9-3x>2
=>-3x>-7
=>\(x< \dfrac{7}{3}\)
d: \(2^{3-x}< 2^3\)
=>3-x<3
=>-x<0
=>x>0
e: \(27^{3-x^2}< 27^{x+1}\)
=>\(3-x^2< x+1\)
=>\(-x^2-x+2< 0\)
=>\(x^2+x-2>0\)
=>(x+2)(x-1)>0
=>\(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)
Cho x,y,z thỏa: 0 <= x,y,z <=2 và x + y + z = 3
CMR: \(x^3+y^3+z^3\le9\)
Giả sử z lớn nhất trong 3 số x,y,z suy ra x+y+z\(\le\)3z => z\(\ge\)1
Kết hợp với điều kiện đề bài =>\(1\le z\le2\)
Ta có \(x^3+y^3\le\left(x+y\right)^3=\left(3-z\right)^3\)
\(\Rightarrow x^3+y^3+z^3\le\left(3-z\right)^3+z^3=27-27z+9z^2=9\left(z-1\right)\left(z-2\right)+9\)
Do \(1\le z\le2\)nên \(9\left(z-1\right)\left(z-2\right)\le0\)
\(\Rightarrow x^3+y^3+z^3\le9\)
Dấu "=" xảy ra khi (x,y,z)=(0,1,2) và các hoán vị
Tìm 3 bộ số x, y, z thỏa mãn: \(\left\{{}\begin{matrix}x+y+z\le9\\\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}+5x+4y+3z=xy+yz+xz+11\end{matrix}\right.\)
Đặt \(\left(x-1;y-2;z-3\right)=\left(a;b;c\right)=abc>0\)
Điều kiện bài toán trở thành :
\(a+1+b+2+c+3< 9\)
\(\sqrt{a+\sqrt{b}+\sqrt{c}}+\sqrt{c+5\left(a+1\right)+4\left(b+2\right)+3+\left(c+3\right)}\)
\(=\left(a+1\right)\left(b+2\right)=\left(b+2\right)\left(c+3\right)=\left(c+3\right)+\left(a+1\right)+11+a+b+c< 3\)
\(a+b+c< 3\)
\(=\sqrt{a+\sqrt{b}+\sqrt{c}+ab+bc+ca}\)
Mặt khác, do aa không âm, ta luôn có:
\(\text{(√a−1)2(a+2√a)≥0(a−1)2(a+2a)≥0}\)
\(\text{⇒a2−3a+2√a≥0⇒a2−3a+2a≥0}\)
\(\text{⇒2√a≥a(3−a)≥a(b+c)⇒2a≥a(3−a)≥a(b+c) (1)}\)
Hoàn toàn tương tự ta có:\(\text{ 2√b≥b(c+a)2b≥b(c+a) (2)}\)
\(\text{2√c≥c(a+b)2c≥c(a+b) (3)}\)
Cộng vế với vế (1);(2);(3):
\(\text{2(√a+√b+√c)≥2(ab+bc+ca)2(a+b+c)≥2(ab+bc+ca)}\)
\(\text{⇔√a+√b+√c≥ab+bc+ca⇔a+b+c≥ab+bc+ca}\)
Dấu "=" xảy ra khi và chỉ khi \(\text{a=b=c=0a=b=c=0 hoặc a=b=c=1a=b=c=1}\)
⇒x=...;y=...;z=...
Cho 3 số thực thỏa mãn \(x^2+y^2+z^2\le9\)
Tìm giá trị lớn nhất của A=x+y+z-3(xy+xz+yz)
bạn ấy ko biết thì bạn ấy hỏi sao câu lại chửi cậu ấy là ngu
Cho 3 số thực \(x^2+y^2+z^2\le9\)
tìm giá trị lớn nhất của A=x+y+z-(xy+xz+yz)
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}\)
Đặt \(a=x+y+z\)
\(A=a-\frac{a^2-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\left(a-1\right)^2+\frac{x^2+y^2+z^2}{2}+\frac{1}{2}\le\frac{9}{2}+\frac{1}{2}=5\)
Dấu bằng xảy ra khi \(\int^{x^2+y^2+z^2=9}_{x+y+z=1}\)
có rất nhiều bộ số thỏa hệ trên, ví dụ \(\left(x;y;z\right)=\left(1;\text{ }2;\text{ }-2\right)\)
Vậy Max A = 5
Tính tổng các số nguyên x biết:
1) \(\left|x\right|\le9\)
2) \(\left|x\right|-3\le7\)
3) \(\left|x-3\right|\le7\)
1) \(\left|x\right|\le9\)
\(\Rightarrow x\in\left\{-9;-8;-7;...;7;8;9\right\}\)
2) \(\left|x\right|-3\le7\)
\(\Rightarrow\left|x\right|\le7+3\)
\(\Rightarrow\left|x\right|\le10\)
\(\Rightarrow x\in\left\{-10;-9;-8;...;8;9;10\right\}\)
3) \(\left|x-3\right|\le7\)
\(\Rightarrow\left|x-3\right|\in\left\{0;1;2;3;4;5;6;7\right\}\)
\(\Rightarrow\left(x-3\right)\in\left\{-7;-6;-5;...;5;6;7\right\}\)
\(\Rightarrow x\in\left\{-4;-3;-2;...;8;9;10\right\}\)
tìm bộ ba số (x,y,z) thỏa mãn:
\(\hept{\begin{cases}x+y+z\le9\\\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}+5x+4y+3z=xy+yz+xz+11\end{cases}}\)
Liệt kê các phần tử ?
Q={ x \(\in\)N | \(2\le x\le9\)}
Cho \(P=3\sqrt{x-5}+4\sqrt{9-x}\) với \(\left(5\le x\le9\right)\). Gọi a, b lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P. Tính a2 + b2.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2=(3\sqrt{x-5}+4\sqrt{9-x})^2\leq (3^2+4^2)(x-5+9-x)=100$
$\Rightarrow P\leq 10$
Vậy $P_{\max}=10$ hay $a=10$
---------------------------
Áp dụng bổ đề: $\sqrt{x}+\sqrt{y}\geq \sqrt{x+y}$ với $x,y\geq 0$ (điều này hoàn toàn dễ dàng cm bằng bình phương 2 vế và khai triển), ta có:
$P=3(\sqrt{x-5}+\sqrt{9-x})+\sqrt{9-x}$
$\sqrt{x-5}+\sqrt{9-x}\geq \sqrt{x-5+9-x}=2$
$\sqrt{9-x}\geq 0$
$\Rightarrow P\geq 3.2+0=6$ hay $P_{\min}=6$ hay $b=6$
Vậy:
$a^2+b^2=10^2+6^2=136$