Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết

a: \(27^{2-x}< =9\)

=>\(\left(3^3\right)^{2-x}< =3^2\)

=>\(3^{6-3x}< =3^2\)

=>6-3x<=2

=>-3x<=-4

=>\(x>=\dfrac{4}{3}\)

b: \(7^{3-x}< 49\)

=>\(7^{3-x}< 7^2\)

=>3-x<2

=>-x<2-3=-1

=>x>1

c: \(27^{3-x}>9\)

=>\(\left(3^3\right)^{3-x}>3^2\)

=>\(3^{9-3x}>3^2\)

=>9-3x>2

=>-3x>-7

=>\(x< \dfrac{7}{3}\)

d: \(2^{3-x}< 2^3\)

=>3-x<3

=>-x<0

=>x>0

e: \(27^{3-x^2}< 27^{x+1}\)

=>\(3-x^2< x+1\)

=>\(-x^2-x+2< 0\)

=>\(x^2+x-2>0\)

=>(x+2)(x-1)>0

=>\(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)

Minh Nguyễn Cao
Xem chi tiết

Giả sử z lớn nhất trong 3 số x,y,z suy ra x+y+z\(\le\)3z  => z\(\ge\)1

Kết hợp với điều kiện đề bài =>\(1\le z\le2\)

Ta có \(x^3+y^3\le\left(x+y\right)^3=\left(3-z\right)^3\)

\(\Rightarrow x^3+y^3+z^3\le\left(3-z\right)^3+z^3=27-27z+9z^2=9\left(z-1\right)\left(z-2\right)+9\)

Do \(1\le z\le2\)nên \(9\left(z-1\right)\left(z-2\right)\le0\)

\(\Rightarrow x^3+y^3+z^3\le9\)

Dấu "=" xảy ra khi (x,y,z)=(0,1,2) và các hoán vị

Big City Boy
Xem chi tiết
Rhider
26 tháng 11 2021 lúc 8:34

Đặt \(\left(x-1;y-2;z-3\right)=\left(a;b;c\right)=abc>0\)

Điều kiện bài toán trở thành :

\(a+1+b+2+c+3< 9\)

\(\sqrt{a+\sqrt{b}+\sqrt{c}}+\sqrt{c+5\left(a+1\right)+4\left(b+2\right)+3+\left(c+3\right)}\)

\(=\left(a+1\right)\left(b+2\right)=\left(b+2\right)\left(c+3\right)=\left(c+3\right)+\left(a+1\right)+11+a+b+c< 3\)

\(a+b+c< 3\)

\(=\sqrt{a+\sqrt{b}+\sqrt{c}+ab+bc+ca}\)

Mặt khác, do aa không âm, ta luôn có:

\(\text{(√a−1)2(a+2√a)≥0(a−1)2(a+2a)≥0}\)

\(\text{⇒a2−3a+2√a≥0⇒a2−3a+2a≥0}\)

\(\text{⇒2√a≥a(3−a)≥a(b+c)⇒2a≥a(3−a)≥a(b+c) (1)}\)

Hoàn toàn tương tự ta có:\(\text{ 2√b≥b(c+a)2b≥b(c+a) (2)}\)

\(\text{2√c≥c(a+b)2c≥c(a+b) (3)}\)

Cộng vế với vế (1);(2);(3):

\(\text{2(√a+√b+√c)≥2(ab+bc+ca)2(a+b+c)≥2(ab+bc+ca)}\)

\(\text{⇔√a+√b+√c≥ab+bc+ca⇔a+b+c≥ab+bc+ca}\)

Dấu "=" xảy ra khi và chỉ khi \(\text{a=b=c=0a=b=c=0 hoặc a=b=c=1a=b=c=1}\)

⇒x=...;y=...;z=...

lipphangphangxi nguyen k...
Xem chi tiết
Nguyễn Thị Thu Hiền
16 tháng 4 2016 lúc 22:08

bạn ấy ko biết thì bạn ấy hỏi sao câu lại chửi cậu ấy là ngu

Tran van Hien
16 tháng 4 2016 lúc 22:00

Ngu NGU NGU. Hà hà

Hot Boy
16 tháng 4 2016 lúc 22:09

bn ơi đừng chửi người khác vậy

lipphangphangxi nguyen k...
Xem chi tiết
Mr Lazy
17 tháng 4 2016 lúc 0:50

\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}\)

Đặt \(a=x+y+z\)

\(A=a-\frac{a^2-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\left(a-1\right)^2+\frac{x^2+y^2+z^2}{2}+\frac{1}{2}\le\frac{9}{2}+\frac{1}{2}=5\)

Dấu bằng xảy ra khi \(\int^{x^2+y^2+z^2=9}_{x+y+z=1}\)

có rất nhiều bộ số thỏa hệ trên, ví dụ \(\left(x;y;z\right)=\left(1;\text{ }2;\text{ }-2\right)\)

Vậy Max A = 5

Công Chúa Hoa Hồng
Xem chi tiết
Trịnh Thị Thúy Vân
29 tháng 7 2016 lúc 17:52

1) \(\left|x\right|\le9\)

\(\Rightarrow x\in\left\{-9;-8;-7;...;7;8;9\right\}\)

2) \(\left|x\right|-3\le7\)

\(\Rightarrow\left|x\right|\le7+3\)

\(\Rightarrow\left|x\right|\le10\)

\(\Rightarrow x\in\left\{-10;-9;-8;...;8;9;10\right\}\)

3) \(\left|x-3\right|\le7\)

\(\Rightarrow\left|x-3\right|\in\left\{0;1;2;3;4;5;6;7\right\}\)

\(\Rightarrow\left(x-3\right)\in\left\{-7;-6;-5;...;5;6;7\right\}\)

\(\Rightarrow x\in\left\{-4;-3;-2;...;8;9;10\right\}\)

nguyen van bi
Xem chi tiết
Lê Khánh Cường
Xem chi tiết
Hoshiiha Hikari
23 tháng 8 2016 lúc 21:48

Q = { 3,4,5,6,7,8}

K MIK NHA

Hà Phương Anh
23 tháng 8 2016 lúc 21:45

Q = {2; 3; 4; 5; 6; 7; 8; 9}

Nkók_k Ngu_u Ngơ_ơ
23 tháng 8 2016 lúc 21:47

Q={2;3;4;5;6;7;8;9}

click nha

Dương Bảo Hùng
Xem chi tiết
Akai Haruma
23 tháng 6 2020 lúc 0:14

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$P^2=(3\sqrt{x-5}+4\sqrt{9-x})^2\leq (3^2+4^2)(x-5+9-x)=100$

$\Rightarrow P\leq 10$

Vậy $P_{\max}=10$ hay $a=10$

---------------------------

Áp dụng bổ đề: $\sqrt{x}+\sqrt{y}\geq \sqrt{x+y}$ với $x,y\geq 0$ (điều này hoàn toàn dễ dàng cm bằng bình phương 2 vế và khai triển), ta có:

$P=3(\sqrt{x-5}+\sqrt{9-x})+\sqrt{9-x}$

$\sqrt{x-5}+\sqrt{9-x}\geq \sqrt{x-5+9-x}=2$

$\sqrt{9-x}\geq 0$

$\Rightarrow P\geq 3.2+0=6$ hay $P_{\min}=6$ hay $b=6$

Vậy:

$a^2+b^2=10^2+6^2=136$