2, cho tg ABC vg tại A, dg cao AH. Từ H kẻ HE ⊥ AB, HF ⊥ AC.
a, cho BH= 9 cm; CH= 25cm. Tính AH,AB
b, CMR: AE.AB=AF.AC
c, CMR: \(\dfrac{sinB+5cosC}{sin^4B+cos^4B+2sin^2B.cos^2B}=6sinB\)
Cho tam giác ABC vuông tại A, kẻ đường cao AH, biết BH=4cm, CH=9cm. Kẻ HE vuông góc với AB, HF vuông góc với AC.
a) tính BC, AH.
b) Tính EF.
c) từ F kẻ đường thẳng vuoogn góc với FE và cắt BC tại M, tính sinEMF.
a: Ta có: BH+CH=BC
nên BC=13(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
hay AH=6(cm)
Cho tam giác ABC vuông tại A, đường cao AH( H thuộc BC). Từ H kẻ HE\(\perp\)AC, HF\(\perp\)AB, AB=c, AC=b.
a) tính AE, AF theo b,c
b)CM: BF\(\sqrt{CH}+CE\sqrt{BH}=AH\sqrt{BC}\)
Cho tgiac ABC vuông tại A, đường cao AH, kẻ HE vg tại AB, HF vg AC a.Cm: AE *AB=AF*AC b.Cm: HE*EB vg AF*FC=HB*HC
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
b: Sửa đề: \(AE\cdot EB+AF\cdot FC=HB\cdot HC\)
Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot EB=HE^2\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot FC=HF^2\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
\(AE\cdot EB+AF\cdot FC=HE^2+HF^2\)
\(=EF^2=AH^2=HB\cdot HC\)
Cho tam giác ABC vuông tại A có AB = 3 cm AC = 4 cm , đường cao AH a, CM : tam giác ABC đồng dạng tam giác HBA từ đó suy ra ab² = BC . BH b , tính BC và BH c, Kẻ HE vuông góc AB , HF vuông góc AC Chứng minh AH . BH = BE.AC và tính độ dài BE
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
cho △ABC vuông tại A, AB = 9cm, AC=12cm, AH là đường cao
a) cm: △AHB đồng dạng △CHA
b) cm: AB.AC = AH.BC
c) Tính BC, BH, CH
d) từ H kẻ HE ⊥ AB, HF⊥ AC. cm: AE.AB+ AF.AC = 2.AH2
a) Vì AH \(\perp\) BC (gt)
=> \(\widehat{AHB}=\widehat{AHC}=90^o\) (ĐN 2 đường thẳng \(\perp\))
Ta có: \(\widehat{C}+\widehat{A_1}=90^o\) (\(\Delta\)AHC vuông tại H do \(\widehat{AHC}=90^o\))
mà \(\widehat{A_1}+\widehat{A_2}=90^o\) (\(\widehat{BAC}=90^o\) do \(\Delta\)ABC vuông tại A)
=> \(\widehat{C}=\widehat{A_2}\)
Xét \(\Delta\)AHB và \(\Delta\)CHA có:
\(\widehat{AHB}=\widehat{AHC}\) (cmt)
\(\widehat{C}=\widehat{A_2}\) (cmt)
=> \(\Delta\)AHB ~ \(\Delta\)CHA (g.g)
b) Xét \(\Delta\)ABH và \(\Delta\)CBA có:
\(\widehat{ABC}=\widehat{AHB}\left(=90^o\right)\)
\(\widehat{B}\): chung
=> \(\Delta\)ABH ~ \(\Delta\)CBA(g.g)
=> \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (ĐN 2 \(\Delta\) ~)
=> \(AB\cdot CA=AH\cdot CB\) (t/c TLT)
c) Xét \(\Delta\)ABC vuông tại A (gt) có:
\(AB^2+AC^2=BC^2\) (ĐL Pi-ta-go)
=> \(BC^2=9^2+12^2=225\)
=> BC = 15cm
Ta có: \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (cmt)
=> \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=7,2cm\)
Xét \(\Delta\)AHB vuông tại H (cmt) có:
\(AH^2+HB^2=AB^2\) (ĐL Pi-ta-go)
=> \(BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)
=> BH = 5,4cm
Lại có: \(HC=BC-BH=15-5,4=9,6\)cm
cho tg ABC vuông tại A có AH là đường cao từ H kẻ HE vuông góc với AB EF và AH CMR:OP vuông góc với HF HF vuông góc với AC gọi P là trung điểm của HC và O là giao điểm
cho tam giác abc vuông tại A, đường cao AH. Từ H kẻ HE vuông góc với AC. HF vuông góc với AB. cm: \(BH\sqrt{CH}+CE\sqrt{BH}=AH\sqrt{BC}\)
Cho tam giác ABC vuông tại A , đường cao AH
1. Biết AB = 18 cm , AC =24 cm .
a, Tính BC , BH , AH .
b, Tính các góc của tam giác ABC.
2. Kẻ HE vuông góc với AB , HF vuông góc với AC .
Chứng minh AE.EB+À.FC = AH 2
Bài 1:
a: BC=30cm
AH=14,4(cm)
BH=10,8(cm)
Cho tg ABC cân tại A có AB=5cm, BC=6cm. Từ A kẻ đường vuông góc đến AH đến BC.
a/CM: BH=HC.
b/Tính độ dài đoạn AH.
c/Gọi G là trọng tâm tg ABC. Trên tia AG lấy điểm D sao cho AG=GD. CG cắt AB tại F. CM: BD=2/3CF và BD>BF.
d/CM: DB+DG>AB.