a) Vì AH \(\perp\) BC (gt)
=> \(\widehat{AHB}=\widehat{AHC}=90^o\) (ĐN 2 đường thẳng \(\perp\))
Ta có: \(\widehat{C}+\widehat{A_1}=90^o\) (\(\Delta\)AHC vuông tại H do \(\widehat{AHC}=90^o\))
mà \(\widehat{A_1}+\widehat{A_2}=90^o\) (\(\widehat{BAC}=90^o\) do \(\Delta\)ABC vuông tại A)
=> \(\widehat{C}=\widehat{A_2}\)
Xét \(\Delta\)AHB và \(\Delta\)CHA có:
\(\widehat{AHB}=\widehat{AHC}\) (cmt)
\(\widehat{C}=\widehat{A_2}\) (cmt)
=> \(\Delta\)AHB ~ \(\Delta\)CHA (g.g)
b) Xét \(\Delta\)ABH và \(\Delta\)CBA có:
\(\widehat{ABC}=\widehat{AHB}\left(=90^o\right)\)
\(\widehat{B}\): chung
=> \(\Delta\)ABH ~ \(\Delta\)CBA(g.g)
=> \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (ĐN 2 \(\Delta\) ~)
=> \(AB\cdot CA=AH\cdot CB\) (t/c TLT)
c) Xét \(\Delta\)ABC vuông tại A (gt) có:
\(AB^2+AC^2=BC^2\) (ĐL Pi-ta-go)
=> \(BC^2=9^2+12^2=225\)
=> BC = 15cm
Ta có: \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (cmt)
=> \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=7,2cm\)
Xét \(\Delta\)AHB vuông tại H (cmt) có:
\(AH^2+HB^2=AB^2\) (ĐL Pi-ta-go)
=> \(BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)
=> BH = 5,4cm
Lại có: \(HC=BC-BH=15-5,4=9,6\)cm