Ôn tập cuối năm phần hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Haya Toka

cho △ABC vuông tại A, AB = 9cm, AC=12cm, AH là đường cao

a) cm: △AHB đồng dạng △CHA

b) cm: AB.AC = AH.BC

c) Tính BC, BH, CH

d) từ H kẻ HE ⊥ AB, HF⊥ AC. cm: AE.AB+ AF.AC = 2.AH2

A B C H E F 1 2

a) Vì AH \(\perp\) BC (gt)

=> \(\widehat{AHB}=\widehat{AHC}=90^o\) (ĐN 2 đường thẳng \(\perp\))

Ta có: \(\widehat{C}+\widehat{A_1}=90^o\) (\(\Delta\)AHC vuông tại H do \(\widehat{AHC}=90^o\))

\(\widehat{A_1}+\widehat{A_2}=90^o\) (\(\widehat{BAC}=90^o\) do \(\Delta\)ABC vuông tại A)

=> \(\widehat{C}=\widehat{A_2}\)

Xét \(\Delta\)AHB và \(\Delta\)CHA có:

\(\widehat{AHB}=\widehat{AHC}\) (cmt)

\(\widehat{C}=\widehat{A_2}\) (cmt)

=> \(\Delta\)AHB ~ \(\Delta\)CHA (g.g)

b) Xét \(\Delta\)ABH và \(\Delta\)CBA có:

\(\widehat{ABC}=\widehat{AHB}\left(=90^o\right)\)

\(\widehat{B}\): chung

=> \(\Delta\)ABH ~ \(\Delta\)CBA(g.g)

=> \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (ĐN 2 \(\Delta\) ~)

=> \(AB\cdot CA=AH\cdot CB\) (t/c TLT)

c) Xét \(\Delta\)ABC vuông tại A (gt) có:

\(AB^2+AC^2=BC^2\) (ĐL Pi-ta-go)

=> \(BC^2=9^2+12^2=225\)

=> BC = 15cm

Ta có: \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (cmt)

=> \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=7,2cm\)

Xét \(\Delta\)AHB vuông tại H (cmt) có:

\(AH^2+HB^2=AB^2\) (ĐL Pi-ta-go)

=> \(BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)

=> BH = 5,4cm

Lại có: \(HC=BC-BH=15-5,4=9,6\)cm


Các câu hỏi tương tự
Giang Phạm
Xem chi tiết
_ Yuki _ Dễ thương _
Xem chi tiết
Trx Bình
Xem chi tiết
Bruh
Xem chi tiết
Eira
Xem chi tiết
Bích Nguyệtt
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Phương Mai
Xem chi tiết
Phương Nguyễn 2k7
Xem chi tiết