Bài 1. Cho △ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a. Cm: △AFH ∼ △ ADB
b. Cm: BH . HE = CH . HF
c. Cm: △AEF ~ △ABC
d. Gọi I là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường AC tại N. Chứng minh: MH = HN.
Bài 2. Cho △ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE,CF cắt nhau tại H.
a. Cm: △CFB ~ △ADB
b. Cm: AF . AB = AH . AD
c. Cm: △BDF ~ △BAC
d. Gọi M là trung điểm của BC. Chứng minh: Góc EDF = góc EMF.
a: Xét ΔAFH vuông tại F và ΔADB vuông tại Dcó
góc FAH chung
Do đo: ΔAFH đồng dạng với ΔADB
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC
hay \(HF\cdot HC=HB\cdot HE\)
c: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
Do đó: ΔBAE đồg dạg với ΔCAF
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC