cmr: trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối của tứ giác đó
giúp mk với :(
a) c/m rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối.
b) C/m rằng trong một tứ giác tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác đấy.
b) Gọi tứ giác cần chứng minh là ABCD, giao điểm hai đường chéo AC và BD là O
Xét ΔABO có AO+OB>AB
Xét ΔCOD có OC+OD>CD
Xét ΔAOD có OA+OD>AD
Xét ΔBOC có OB+OC>BC
Ta có: AC+BD=AO+OB+OC+OD
\(\Leftrightarrow AC+BD>AB+CD\)
Ta có: AC+BD=AO+OD+OB+OC
\(\Leftrightarrow AC+BD>AD+BC\)
mà AC+BD>AB+CD
nên \(2\left(AC+BD\right)>AB+AD+BC+CD\)
\(\Leftrightarrow AC+BD>\dfrac{AB+AD+BC+CD}{2}\)
Xét ΔABD có BD<AB+AD
Xét ΔCBD có BD<BC+CD
Xét ΔABC có AC<AB+BC
Xét ΔADC có AC<AD+DC
Do đó: BD+BD+AC+AC<2(AB+AD+CD+BC)
\(\Leftrightarrow AC+BD< AB+AD+CD+BC\)(2)
Từ (1) và (2) ta suy ra ĐPCM
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối.
Gọi O là giao điểm của hai đường chéo AC và BD
* Trong ∆ OAB, ta có:
OA + OB > AB (bất đẳng thức tam giác) (1)
* Trong ∆ OCD, ta có:
OC + OD > CD (bất đẳng thức tam giác) (2)
Cộng từng vế (1) và (2):
OA + OB + OC + OD > AB + CD
⇒ AC + BD > AB + CD
Cho tứ giác ABCD. Chứng minh:
a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo;
b) Tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
. a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.
b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).
Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD
CMR: Trong một tứ giác tổng hai đường chéo thì lớn hơn nửa chu vi và nhỏ hơn chu vi của tứ giác đó.
1) chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn tổng hai cạnh đối
2)chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
các bạn giúp mình bài này với
Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn tổng hai cạnh đối.
Gọi O là giao điểm của 2 đường chéo AC và BD của hình tứ giác ABCD
Trong các tam giác AOB và COD theo bất đẳng thức tam giác ta lần lượt có :
OA + OB > AB
OC + OD > CD
Cộng theo từng vế bất đẳng thức trên ta có :
AB + BD > AB + CD ( đpcm )
chứng minh rằng trong một tứ giác
a) một đường chéo nhỏ hơn nửa chu vi của tứ giác
b) tổng hai đường chéo lớn hơn tổng hai cành đối
Giúp mình 1 bài này thôi nha :3 (ko spam, sao chép nhá) Chứng minh rằng trong một tứ giác thì: a) Tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài hai đường chéo. b) Tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác.
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
cho tứ giác ABCD có 2 đường chéo AC và BD cắt nhau tại O.Chứng minh tổng hai đường chéo AC và BD lớn hơn tổng hai cạnh đối của tứ giác
Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC, OCD và ODA.