Hãy chứng minh bất đẳng thức a4+b4 >= a3b + ab3 với mọi a,b
CM: a4+b4≥a3b+ab3 (∀a,b)
\(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
Có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2>0\end{matrix}\right.\)
\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)
Áp dụng BĐT cosi với 2 số không âm:
`a^4+b^4+b^4+b^4>=4\root4{a^4b^12}=4|ab^3|>=4ab^3`
Hoàn toàn tương tự:
`b^4+a^4+a^4+a^4>=4a^3b`
`=>a^4+b^4+b^4+b^4+b^4+a^4+a^4+a^4>=4ab^3+4a^3b`
`<=>4(a^4+b^4)>=4(ab^3+a^3b)`
`<=>a^4+b^4>=ab^3+a^3b`
Chứng minh các bất đẳng thức:
a) (\(\dfrac{a+b}{2}\))2 ≥ \(\dfrac{a^2+b^2}{2}\)
b) (a10 + b10)(a2 + b2) ≥ (a8 + b8)(a4 + b4)
a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?)
Dấu = xảy ra <=> a=b
b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)
\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)
\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)
\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b
=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)
Dấu = xảy ra <=>a=b
cho a + b + c = 0. Chứng minh đẳng thức:
a) a4 + b4 + c4 = 2(a2b2 + b2c2 +c2a2); b) a4 + b4 + c4 = 2(ab + bc + ca)2;
a4 + b4 + c4 =(a2+b2+c2)2 /2
Chứng minh các bất đẳng thức sau: a 3 b 3 = a b 3
a 3 b 3 = a 3 3 . b 3 3 = a b 3
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Chứng minh bất đẳng thức: a4 + 1 ≥ a(a2 + 1)
help mình cần gấp
Chứng minh đẳng thức, bất đẳng thức: \(2x^2+2x+1>0\) với mọi x
Ta có: \(2x^2+2x+1\)
\(=2\left(x^2+x+\frac{1}{2}\right)\)
\(=2\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)
\(=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)
hay \(2x^2+2x+1>0\forall x\)(đpcm)
Chứng minh đẳng thức, bất đẳng thức: \(x^2+x+1>0\) với mọi x
Lời giải:
$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$
$=(x+\frac{1}{2})^2+\frac{3}{4}$
$\geq 0+\frac{3}{4}$
$> 0$
Ta có đpcm.
Chứng minh đẳng thức, bất đẳng thức: \(9x^2-6x+2>0\) với mọi x
Lời giải:
Ta thấy:
$9x^2-6x+2=(9x^2-6x+1)+1$
$=[(3x)^2-2.3x+1^2]+1=(3x-1)^2+1$
Vì $(3x-1)^2\geq 0$ với mọi $x$
$\Rightarrow 9x^2-6x+2=(3x-1)^2+1\geq 1>0$ với mọi $x$
Ta có đpcm.
Chứng minh đẳng thức, bất đẳng thức: \(2x^2+2x+1>0\) với mọi x