Lời giải:
Ta thấy:
$9x^2-6x+2=(9x^2-6x+1)+1$
$=[(3x)^2-2.3x+1^2]+1=(3x-1)^2+1$
Vì $(3x-1)^2\geq 0$ với mọi $x$
$\Rightarrow 9x^2-6x+2=(3x-1)^2+1\geq 1>0$ với mọi $x$
Ta có đpcm.
Lời giải:
Ta thấy:
$9x^2-6x+2=(9x^2-6x+1)+1$
$=[(3x)^2-2.3x+1^2]+1=(3x-1)^2+1$
Vì $(3x-1)^2\geq 0$ với mọi $x$
$\Rightarrow 9x^2-6x+2=(3x-1)^2+1\geq 1>0$ với mọi $x$
Ta có đpcm.
Chứng minh đẳng thức, bất đẳng thức: \(x^2+x+1>0\) với mọi x
Chứng minh đẳng thức, bất đẳng thức: \(2x^2+2x+1>0\) với mọi x
Chứng minh đẳng thức, bất đẳng thức: \(2x^2+2x+1>0\) với mọi x
Chứng minh đẳng thức, bất đẳng thức: \(2x^2+2x+1\)>0 với mọi x
Chứng minh bất đẳng thức: \(x^4-4x+5>0\)
Chứng minh đẳng thức, bất đẳng thức: \(x^4+y^4+\left(x+y\right)^4=2.\left(x^2+xy+y^2\right)^2\)
Chứng minh các bất đẳng thức sau: \(\dfrac{x^2+1}{x}\ge2\)
Chứng minh đẳng thức: \(\dfrac{6x}{x^2-9}+\dfrac{5x}{x-3}+\dfrac{x}{x+3}=\dfrac{6x}{x-3}\)
Chứng tỏ biểu thức:
9x2 + 6x + 2 > 0 với mọi x