Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trọng Nghĩa Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 22:57

a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)

=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)

=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)

b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)

c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)

=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)

=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)

=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)

=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)

=>\(x=\dfrac{1}{4}\Omega+k\Omega\)

Mai Anh
Xem chi tiết
Lê Thị Thục Hiền
15 tháng 6 2021 lúc 15:29

Đk:\(cosx\ne\dfrac{1}{2}\) \(\Rightarrow cosx\ne\pm\dfrac{\pi}{3}+k2\pi\);\(k\in Z\)

Pt \(\Leftrightarrow\dfrac{\left(2-\sqrt{3}\right)cosx-\left[1-cos\left(x-\dfrac{\pi}{2}\right)\right]}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx-1+cos\left(\dfrac{\pi}{2}-x\right)=2cosx-1\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow2sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\) (\(k\in Z\)) kết hợp với đk \(\Rightarrow x=\dfrac{2\pi}{3}+k2\pi\)(\(k\in Z\))

Nguyễn Việt Lâm
15 tháng 6 2021 lúc 15:32

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow x\ne\pm\dfrac{\pi}{3}+k2\pi\)

\(\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)-1=2cosx-1\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=0\)

\(\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=-\dfrac{2\pi}{3}+k2\pi\)

M Thiện Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2021 lúc 17:53

1.

\(\Leftrightarrow cos\left(2x+\dfrac{4\pi}{3}\right)=0\)

\(\Leftrightarrow2x+\dfrac{4\pi}{3}=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow2x=-\dfrac{5\pi}{6}+k\pi\)

\(\Leftrightarrow x=-\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)

b.

\(\Leftrightarrow2+2cos\left(2x+\dfrac{\pi}{3}\right)-3=0\)

\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\2x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

c.

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{6}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=k\pi\end{matrix}\right.\)

Nguyễn Sinh Hùng
Xem chi tiết
phamthiminhanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2023 lúc 22:42

a: =>2sin(x+pi/3)=-1

=>sin(x+pi/3)=-1/2

=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi

=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi

b: =>2sin(x-30 độ)=-1

=>sin(x-30 độ)=-1/2

=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ

=>x=k*360 độ hoặc x=240 độ+k*360 độ

c: =>2sin(x-pi/6)=-căn 3

=>sin(x-pi/6)=-căn 3/2

=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi

=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi

d: =>2sin(x+10 độ)=-căn 3

=>sin(x+10 độ)=-căn 3/2

=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ

=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ

e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)

=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)

=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ

=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ

f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)

=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi

=>x=pi/12+k2pi hoặc x=19/12pi+k2pi

Nguyễn Đức Trí
12 tháng 9 2023 lúc 9:13

g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

h) \(1+sin\left(x-30^o\right)=0\)

\(\Leftrightarrow sin\left(x-30^o\right)=-1\)

\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow x=-60^0+k360^o\)

Nguyễn Hoàng Long
Xem chi tiết
títtt
Xem chi tiết
2611
22 tháng 8 2023 lúc 20:25

`a)sin x =4/3`

`=>` Ptr vô nghiệm vì `-1 <= sin x <= 1`

`b)sin 2x=-1/2`

`<=>[(2x=-\pi/6+k2\pi),(2x=[7\pi]/6+k2\pi):}`

`<=>[(x=-\pi/12+k\pi),(x=[7\pi]/12+k\pi):}`    `(k in ZZ)`

`c)sin(x - \pi/7)=sin` `[2\pi]/7`

`<=>[(x-\pi/7=[2\pi]/7+k2\pi),(x-\pi/7=[5\pi]/7+k2\pi):}`

`<=>[(x=[3\pi]/7+k2\pi),(x=[6\pi]/7+k2\pi):}`     `(k in ZZ)`

`d)2sin (x+pi/4)=-\sqrt{3}`

`<=>sin(x+\pi/4)=-\sqrt{3}/2`

`<=>[(x+\pi/4=-\pi/3+k2\pi),(x+\pi/4=[4\pi]/3+k2\pi):}`

`<=>[(x=-[7\pi]/12+k2\pi),(x=[13\pi]/12+k2\pi):}`    `(k in ZZ)`

Nguyễn Lê Phước Thịnh
22 tháng 8 2023 lúc 20:21

a: sin x=4/3

mà -1<=sinx<=1

nên \(x\in\varnothing\)

b: sin 2x=-1/2

=>2x=-pi/6+k2pi hoặc 2x=7/6pi+k2pi

=>x=-1/12pi+kpi và x=7/12pi+kpi

c: \(sin\left(x-\dfrac{pi}{7}\right)=sin\left(\dfrac{2}{7}pi\right)\)

=>x-pi/7=2/7pi+k2pi hoặc x-pi/7=6/7pi+k2pi

=>x=3/7pi+k2pi và x=pi+k2pi

d: 2*sin(x+pi/4)=-căn 3

=>\(sin\left(x+\dfrac{pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)

=>x+pi/4=-pi/3+k2pi hoặc x-pi/4=4/3pi+k2pi

=>x=-7/12pi+k2pi hoặc x=19/12pi+k2pi

ánh tuyết nguyễn
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 12 2022 lúc 23:11

Đặt \(tan\left(x+\dfrac{\pi}{3}\right)=t\)

\(\Rightarrow t^2+\left(\sqrt{3}-1\right)t-\sqrt{3}=0\)

\(\Leftrightarrow t\left(t-1\right)+\sqrt{3}\left(t-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan\left(x+\dfrac{\pi}{3}\right)=1\\tan\left(x+\dfrac{\pi}{3}\right)=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=-\dfrac{2\pi}{3}+k\pi\end{matrix}\right.\)

Linh Le Yen
Xem chi tiết
Hồng Phúc
20 tháng 9 2021 lúc 0:31

\(cos\left(2x+\dfrac{\pi}{3}\right)+cos\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow2cos\dfrac{3x}{2}.cos\left(\dfrac{x}{2}+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\dfrac{3x}{2}=0\\cos\left(\dfrac{x}{2}+\dfrac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{x}{2}+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)