cho: x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=6 . tinh A=x^2018+y^2018+z^2018
cho x,y,z >0 thỏa mãn xyz=1. tìm gtln của biểu thức M= 2018\(x^2+y^2+1)+2018\(z^2+y^2+1)+2018\(z^2+x^2+1)
Cho x, y, z >0, x+y+z=2018. C/m biểu thức sau không phụ thuộc vào x:
m = x.\(\sqrt{\frac{\left(y^2+2018\right).\left(z^2+2018\right)}{x^2+2018}}+y.\sqrt{\frac{\left(x^2+2018\right).\left(z^2+2018\right)}{y^2+2018}}+z.\sqrt{\frac{\left(x^2+2018\right).\left(y^2+2018\right)}{z^2+2018}}\)
Cho các số thực x,y,z thỏa mãn
3(x^2+y^2+z^2)=(x+y+z) và x^2018+y^2018+z^2018=27^671
tính gt của bt A=(x+2y-4z)^2018/3^2018 + 2019
Cho x, y, z thỏa mãn:
\(\frac{x}{2017}+\frac{y}{2018}+\frac{z}{2019}=1\)
\(\frac{2017}{x}+\frac{2018}{y}+\frac{2019}{z}=0\)
CMR:\(\frac{x^2}{2017^2}+\frac{y^2}{2018^2}+\frac{z^2}{2019^2}=1\)
cho x^2018+y^2018+z^20018+t^2018/a^2+b^2+c^2+d^2
=x^2018/a^2+y^2018/b^2+z^2018/c^2+t^2018/d^2tính T=x^2019+y^2019+z^2019+t^2019
giúp mik nha mn ơi.
mik cần gấp bâgiowf
1/ Rút gọn biểu thức : B = \(\sqrt{1+2018^2+\dfrac{2018^2}{2019^2}}+\dfrac{2018}{2019}\)
2/ Cho x, y, z là các số thực thỏa mãn điều kiện x + y + z + xy + yz + zx = 6. Chứng minh rằng : \(x^2+y^2+z^2\ge3\)
Bài 1:
Đặt 2018=a
\(B=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=1+a-\dfrac{a}{a+1}+\dfrac{a}{a+1}=1+a=2019\)
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
Cho các số thực x,y,z thỏa mãn\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)
Tính A= x2016+y2017+z2018
cho các số thực x,y,z thỏa mãn
3(x^2+y^2+z^2)=(x+y+z) và x^2018+y^2018+z^2018=27^671
tính gt của bt A=(x+2y-4z)^2018/3^2018 + 2019
chỉ giùm ik