Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đình Mạnh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:46

+) ABCD là hình thoi nên cũng là hình bình hành

 Áp dụng quy tắc hình bình hành ta có:

 \(\overrightarrow p  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

 \(\Rightarrow  |\overrightarrow p|  = | \overrightarrow {AC}| =AC \)

+) \(\overrightarrow u  = \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {DB} \)

 \(\Rightarrow  |\overrightarrow u|  = | \overrightarrow {DB}| =DB\)

+) \(\overrightarrow v  = 2\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {AB}  + \left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \overrightarrow {AB}  + \overrightarrow {CB} \)\( = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DB} \)

 \(\Rightarrow  |\overrightarrow v|  = | \overrightarrow {DB}| =DB\)

+ Tính \(AC, DB\)

Tam giác ABD có \(AB=AD=a, \widehat A = 60^o\) nên nó là tam giác đều. Do đó DB = a.

Gọi O là giao điểm hai đường chéo.

Ta có: \(AO = AB. \sin B = a. \sin 60^o = \frac {a \sqrt 3}{2} \Rightarrow  AC = a \sqrt 3\)

Vậy \(|\overrightarrow p|  =  a \sqrt 3 ,|\overrightarrow u|  =  a, |\overrightarrow v|  =  a.\)

Thị Mỹ Hạnh Võ
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:16

a)       \(\begin{array}{l}\overrightarrow a  = \left( {\overrightarrow {AC}  + \overrightarrow {BD} } \right) + \overrightarrow {CB}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } \right) + \overrightarrow {BD} \\ = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD}\\  \Rightarrow |{\overrightarrow a}|= \left| {\overrightarrow {AD} } \right| = AD = 1\end{array}\)

b)       \(\begin{array}{l}\overrightarrow a  = \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {BC}  + \overrightarrow {DA}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \left( {\overrightarrow {AD}  + \overrightarrow {DA} } \right)\\ = \overrightarrow {AC}  + \overrightarrow {AA}  = \overrightarrow {AC}  + \overrightarrow 0  = \overrightarrow {AC} \end{array}\)

\(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{1^2} + {1^2}}  = \sqrt 2 \)

\(\Rightarrow |{\overrightarrow a}|= \left| {\overrightarrow {AC} } \right| = \sqrt 2 \)

Thiên Dương Nam
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
20 tháng 5 2017 lúc 12:57

Khối đa diện

\(V_{ABSI}=V_{S.ABI}=\dfrac{1}{2}V_{S.ABCD}=\dfrac{a^3}{9}\)

Kiều Duy Hiếu
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 12 2020 lúc 2:34

Do ABCD là hình vuông nên AC vuông góc BD

Do đó:

\(P=\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{BC}+\overrightarrow{BA}+\overrightarrow{BD}\right)=\left(\overrightarrow{AB}+\overrightarrow{AC}\right).2\overrightarrow{BD}\)

\(=2\overrightarrow{AB}.\overrightarrow{BD}+2\overrightarrow{AC}.\overrightarrow{BD}=2\overrightarrow{AB}.\overrightarrow{BC}=2a.a.cos135^0=-a^2\sqrt{2}\)

 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:36

Ta có: \(AC = BD = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

+) \(AB \bot AD \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {AD}  \Rightarrow \overrightarrow {AB} .\overrightarrow {AD}  = 0\)

+) \(\overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = a.a\sqrt 2.\cos 45^\circ  = a^2\)

+) \(\overrightarrow {AC} .\overrightarrow {CB}  = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {CB} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = a\sqrt 2 .a.\cos 135^\circ  =  - {a^2}\)

+) \(AC \bot BD \Rightarrow \overrightarrow {AC}  \bot \overrightarrow {BD}  \Rightarrow \overrightarrow {AC} .\overrightarrow {BD}  = 0\)

Chú ý

\(\overrightarrow {a}  \bot \overrightarrow {b}  \Leftrightarrow \overrightarrow {a} .\overrightarrow {b}  = 0\)