Lời giải:
a. $K$ là giao điểm $AC$ và $BD$ thì $K$ là trung điểm mỗi đường và $AC\perp BD$ tại $K$
Vì $ABCD$ là hình thoi nên $\widehat{DAK}=\frac{1}{2}\widehat{A}=30^0$
$\frac{AK}{AD}=\cos \widehat{DAK}=\cos 30^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AK=\frac{\sqrt{3}}{2}AD=\frac{\sqrt{3}}{2}a$
$\Rightarrow |\overrightarrow{AC}|=AC=2AK=\sqrt{3}a$
b.
$BK=\sqrt{AB^2-AK^2}=\sqrt{a^2-(\frac{\sqrt{3}}{2}a)^2}=\frac{a}{2}$
$S_{ABC}=\frac{BK.AC}{2}=\frac{AH.BC}{2}$
$\Leftrightarrow \frac{a}{2}.\sqrt{3}a=AH.a$
$\Leftrightarrow AH=\frac{\sqrt{3}}{2}a$ hay $|\overrightarrow{AH}|=\frac{\sqrt{3}}{2}a$