Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Phương Mai
Xem chi tiết
Tuấn IQ 3000
4 tháng 9 2021 lúc 15:37

=(c-b-a)(c-b+a)(c+b-a)(c+b+a)

Lê Phương Mai
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 18:13

\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2=\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 22:39

\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2\)

\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)

\(=\left(a^2-2ac+c^2-b^2\right)\left(a^2+2ac+c^2-b^2\right)\)

\(=\left(a-c-b\right)\left(a-c+b\right)\left(a+c-b\right)\left(a+c+b\right)\)

kapu kotepu
Xem chi tiết
Trần Trúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2023 lúc 19:49

1: =(a+b)^3+c^3-3ab(a+b)-3acb

=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)

=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)

=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

 

Blkscr
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2021 lúc 14:57

Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\)  thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)

Trên con đường thành côn...
5 tháng 7 2021 lúc 14:58

https://olm.vn/hoi-dap/detail/108617134952.html

Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo

 

Trên con đường thành côn...
5 tháng 7 2021 lúc 15:04

undefined

Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:59

\(VT=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)

\(=\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2\)

\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)

\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(a-b-c\right)\left(a+b+c\right)\left(a+c-b\right)\left(a+b-c\right)\)

Do a;b;c là độ dài 3 cạnh của tam giác, ta có:

\(\left\{{}\begin{matrix}a-b-c< 0\\a+b+c>0\\a+c-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrow VT< 0\) (đpcm)

Thu Hiền
Xem chi tiết
Nguyễn Duy Khang
23 tháng 12 2020 lúc 13:31

\(a^6+a^4+a^2b^2+b^4-b^6\\ =a^6-b^6+a^4+a^2b^2+b^4\\ =\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2\right)^3-\left(b^2\right)^3\right]+\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^2+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+2a^2b^2+b^4-a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\\ =\left(a^2-b^2+1\right)\left(a^2+b^2-ab\right)\left(a^2+b^2+ab\right)\)

Nguyễn Bảo Phúc THCS Văn...
23 tháng 12 2020 lúc 13:19

a6, a4 là số mũ hay hệ số vậy bn

Hannah Ngô
Xem chi tiết
Monkey D. Luffy
14 tháng 11 2021 lúc 16:17

\(=4a^4+4a^2b^2+b^4-4a^2b^2\\ =\left(2a^2+b^2\right)^2-\left(2ab\right)^2\\ =\left(2a^2+b^2+2ab\right)\left(2a^2+b^2-2ab\right)\)

Minh Hiếu
14 tháng 11 2021 lúc 16:18

\(4a^4+b^4\)

\(=\left(2a^2\right)^2+\left(b^2\right)^2\)

\(=\left[\left(2a^2\right)^2+4a^2b^2+\left(b^2\right)^2\right]-4a^2b^2\)

\(=\left[2a^2+b^2\right]^2-\left(2ab\right)^2\)

\(=\left(2a^2+b^2+2ab\right)\left(2a^2+b^2-2ab\right)\)

vân nguyễn
Xem chi tiết
Akai Haruma
31 tháng 7 2021 lúc 9:56

Lời giải:

a. Không phân tích được thành nhân tử

b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)

(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)

c.

$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$

$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$

 

Akai Haruma
31 tháng 7 2021 lúc 17:39

Nếu sửa như bạn nói thì làm như sau:

a. 

$a^4+a^2+1=(a^2+2a^2+1)-a^2=(a^2+1)^2-a^2=(a^2+1-a)(a^2+1+a)$
b.

$a^4+a^2-2=(a^4-1)+(a^2-1)=(a^2-1)(a^2+1)+(a^2-1)$

$=(a^2-1)(a^2+1+1)=(a-1)(a+1)(a^2+2)$