Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc Vy
Xem chi tiết
Babi girl
26 tháng 8 2021 lúc 10:47

Babi girl
26 tháng 8 2021 lúc 10:47

Babi girl
26 tháng 8 2021 lúc 10:50

d) \(AC=\sqrt{BC^2-AB^2}=8\)

\(AH=\dfrac{AB.AC}{BC}=4,8\)

\(BH=\sqrt{AB^2-AH^2}=3,6\)

\(CH=BC-BH=6,4\)

Phạm Tú Quỳnh
Xem chi tiết
Phạm Nguyễn Thúy Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Shit em không trôi
Xem chi tiết
Pain zEd kAmi
9 tháng 7 2018 lúc 19:58

Xin 1 slot xíu nữa làm giờ đang bận 

Thiên Đạo Pain
9 tháng 7 2018 lúc 20:02

đừng bắt trc t hiếu à , m càng ngày càng giống t rồi đấy , đờ mờ

Shit em không trôi
9 tháng 7 2018 lúc 20:13

ĐCM lũ tụi m :(((( Ko giúp mà vô phá cả 2 tk pain ôi cái chuyện j xảy ra vậy

Bruh
Xem chi tiết
missing you =
10 tháng 8 2021 lúc 17:14

a,

pytago trong tam giác ABH

\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)

dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)

pytago cho tam giác ABC

\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)

\(=>HC=BC-HB=8cm\)

b, pytago cho tam giác AHB

\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)

rồi tính AC , CH làm tương tự bài trên

Mai Nguyễn thanh
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 8:49

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\end{matrix}\right.\)

ILoveMath
12 tháng 11 2021 lúc 8:51

Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\)

Áp dụng HTL ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{6.8}{10}=4,8\)

Áp dụng HTL ta có:\(BH.BC=AB^2\Rightarrow BC=\dfrac{6^2}{10}=3,6\)

Áp dụng HTL ta có:\(CH.BC=AC^2\Rightarrow BC=\dfrac{8^2}{10}=6,4\)

Tandz3508
Xem chi tiết
SonGoku
13 tháng 9 2023 lúc 17:32

Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:

BC2=AB2+AC2

<=>BC2=32+42

<=>BC2=25

<=>BC=5(cm)

Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:

AB.AC=BC.AH

<=>3.4=5.AH

<=> AH=\(\dfrac{3.4}{5}\)

<=>AH=2,4(cm)

Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:

AB2=AH2+BH2

<=>BH2=32-2,42

<=>BH2=3,24

<=>BH=1,8(cm)
Ta có:BC=BH+CH

=>CH=BC-BH=5-1,8=3,2(cm)

Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm

 

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 17:36

loading...  

heo lunnn Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 22:30

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:19

Ta có: BC=BH+CH

nên BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

sữa cute
12 tháng 9 2021 lúc 21:17

Trang Thuy
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 10 2021 lúc 9:43

Áp dụng HTL:

\(\dfrac{1}{AH^2}=\dfrac{1}{51,84}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{144}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AC^2}=\dfrac{1}{81}\Rightarrow AC=9\left(cm\right)\)

Áp dụng PTG \(BC=\sqrt{BA^2+AC^2}=15\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)