Giải PT :
\(2x^2-2017\sqrt{2019-x^2}-2019=0\)
giải phương trình 2x2-2017\(\sqrt{2019-x^2}\)-2019=0
Đặt t=\(\sqrt{2019-x^{ }2}\)>0, nên \(t^2\)=2019-\(x^2\) hay \(x^2\)=2019-\(t^2\).
từ đề bài ta có: 2019-\(t^2\)-\(t^2\)-2017t=0
hay 2\(t^2\)+2017t-2019=0, nên t=1 và t=-2019/2<0 loại
t=1, nên \(x^2\)=2018, nên x=2018 hoặc x=-2018 thỏa điều kiện 2019-\(x^2\)>=0
\(2x^2-2017\sqrt{2019-x^2}\)\(-2019=0\)
Giải PT: \(\sqrt{\left(x^2+2x\right)^2+4\left(x+1\right)^2}-\sqrt{x^2+\left(x+1\right)^2+\left(x^2+x\right)^2}=2019\)
Chú ý:
\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)
\(=\left(x^2+2x+2\right)^2\)
\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)
\(=\left(x^2+x\right)+x^2+x^2+2x+1\)
\(=\left(x^2+x\right)^2+2x^2+2x+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(=\left(x^2+x+1\right)^2\)
giải pt: \(\sqrt{x-2019}+\sqrt{2021-x}\)=(x-2020)2+2
ĐKXĐ: \(2019\le x\le2020\)
\(VT=\sqrt{x-2019}+\sqrt{2021-x}\le\sqrt{2\left(x-2019+2021-x\right)}=2\)
\(VP=\left(x-2020\right)^2+2\ge2\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-2019=2021-x\\x-2020=0\end{matrix}\right.\) \(\Leftrightarrow x=2020\)
1) Giải PT : \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\) 2)Cho PT : \(x^2-2x-5=0\)Không giải pt hãy tính giá trị biểu thức : A = \(x_1^3-2x_2^2-5x_1+8x_2+2019\)với \(x_1,x_2\)là 2 nghiệm của PT
Giải pt:
a)\(x=2019-\sqrt{2019-\sqrt{x}}\)
b)\(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
a/ \(0\le x\le2019^2\)
Đặt \(\sqrt{x}=t\ge0\Rightarrow t^2-2019+\sqrt{2019-t}=0\)
Đặt \(\sqrt{2019-t}=a\Rightarrow2019=a^2+t\) ta được:
\(t^2-\left(a^2+t\right)+a=0\)
\(\Leftrightarrow t^2-a^2-\left(t-a\right)=0\)
\(\Leftrightarrow\left(t-a\right)\left(t+a\right)-\left(t-a\right)=0\)
\(\Leftrightarrow\left(t-a\right)\left(t+a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=t\\a=1-t\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2019-t}=t\\\sqrt{2019-t}=1-t\left(t\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t^2+t-2019=0\\t^2-t-2018=0\end{matrix}\right.\) \(\Rightarrow t=...\Rightarrow x=t^2=...\)
Giải các pt sau:
a) \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)
b) \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
c) \(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\)
a) ĐKXĐ: \(x\ne\pm2\)
Ta có: \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)
\(\Leftrightarrow\dfrac{x}{x+2}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow x\left(x-2\right)=x^2+4\)
\(\Leftrightarrow x^2-2x=x^2+4\)
\(\Leftrightarrow-2x=4\Leftrightarrow x=-2\)(KTMĐK)
Vậy phương trình vô nghiệm
b) ĐKXĐ: \(x\ne3;x\ne-1\)
Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)-2.2x=0\)
\(\Leftrightarrow x^2+x+x^2-3x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=3\left(KTMĐK\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm là \(x=0\)
c) Ta có: \(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\)
\(\Leftrightarrow\dfrac{2-x}{2017}+1=\dfrac{1-x}{2018}+1-\dfrac{x}{2019}+1\)
\(\Leftrightarrow\dfrac{2-x}{2017}+1=\left(\dfrac{1-x}{2018}+1\right)-\left(\dfrac{x}{2019}-1\right)\)
\(\Leftrightarrow\dfrac{2-x+2017}{2017}=\dfrac{1-x+2018}{2018}-\dfrac{x-2019}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{2019-x}{2018}+\dfrac{2019-x}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}-\dfrac{2019-x}{2018}-\dfrac{2019-x}{2019}=0\)
\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)
\(\Leftrightarrow2019-x=0\)(vì \(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}\ne0\))
\(\Leftrightarrow x=2019\)
Vậy nghiệm của phương trình là \(x=2019\)
Giải pt: \(\sqrt{x+3}x^4=2x^4-2019x+2019\)
đk : \(x\ge-3\) Viết phương trình thành \(x^4\left(\sqrt{x+3}-2\right)=2019\left(1-x\right)\)
\(\Leftrightarrow\frac{x^4\left(\sqrt{x+3}-2\right)\left(\sqrt{x+3}+2\right)}{(\sqrt{x+3}+2)}=2019\left(1-x\right)\) \(\Leftrightarrow\frac{x^4\left(x-1\right)}{\left(\sqrt{x+3}+2\right)}+2019\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)[\frac{x^4}{\sqrt{x+3}+2}+2019]=0\Leftrightarrow x=1.\) Vì \(\frac{x^4}{\sqrt{x+3}+2}+2019>0\) với mọi giá trị của x thuộc tập xác định.
Đáp số x = 1
Giải phương trình:
\(\sqrt[3]{3x^2-2x+2017}-\sqrt[3]{3x^2-8x+2018}-\sqrt[3]{6x-2019}=\sqrt[3]{2018}\)