Cho tam giác ABC vuông tại A ,vẽ đường cao AH .Gọi D và E theo thứ tự là các điểm đối xứng của H qua AB , AC Gọi giao điểm của HD với AB là M Giao điểm HE với AC là N . CMR
a,Tứ giác BDEC là hình thang
b,DE=2AH
cho tam giác abc vuông góc tại đỉnh A,đường cao AH. gọi D và E theo thứ tự là các điểm đối xứng của điểm H qua các cạnh AB,AC và M là giao điểm của HD với AB,N là giao điểm của HE và AC a.C/M A là trung điểm của đoạn thẳng DE b.C/M MN=AH c.C/M tứ giác BDEC là hình thang vuông
a) Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
Suy ra: AH=AD
Xét ΔAHD có AH=AD
nên ΔAHD cân tại A
mà AB là đường trung trực ứng với cạnh đáy HD
nên AB là tia phân giác của \(\widehat{HAD}\)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: AH=AE
Xét ΔAEH có AH=AE
nên ΔAEH cân tại A
mà AC là đường trung trực ứng với cạnh đáy HE
nên AC là tia phân giác của \(\widehat{EAH}\)
Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)
\(=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)\)
\(=2\cdot90^0=180^0\)
Suy ra: E,A,D thẳng hàng
mà AE=AD(=AH
nên A là trung điểm của ED
Giúp mình nhé!!
Bài 1: Cho HCN ABCD có AB=2AD. Gọi E, F theo thứ tự là trung điểm của các cạnh AB,CD. Gọi M là giao điểm của AF và DE, N là giao điểm đối xứng với M qua I
a) Tứ giác ADFE là hình gì? Vì sao?
b) CM: EMFN là hình vuông
Bài 2: Cho tam giác ABC vuông tại A đường cao AH. Gọi D là giao điểm đối xứng với H qua AC chứng minh:
a) D đối xứng với E qua A
b) Tam fiacs DHE vuông
c) Tứ giác BDEC là hình thang vuông
d) BC=BD+CE
Bài 1:
Điểm I ở đâu ra vậy bạn?
Bài 2 :
Điểm E ở đâu ra vậy bạn ????????
Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC). Qua H kẻ HD,HE theo thứ tự vuông góc với AB,AC( D thuộc AB,E thuộc AC).
a) Tứ giác AEHD là hình gì? Vì sao?
b) Vẽ hai điểm M, N lần lượt đối xứng với H qua D và E. Chứng minh M đối xứng với N qua A
c) Gọi I là trung điểm của BC. Chứng minh AI//NC
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, gọi E là điểm đối xứng với H qua AC. Gọi M là giao điểm của HD với AB, N là giao điểm của HE với AC.
a) Tứ giác AMHN là hình gì? Vì sao?
b) Chứng minh D đối với E qua A
c) Tứ giác BCED là hình gì? Vì sao?
cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB gọi E là điểm đối xứng với H qua AC.
a) CMR: D đối xứng với e qua a
b)tứ giác BDEC là hình gì?
c) cho AB=6cm, AC=8cm. tính diện tích tứ giác BDEC.
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Kẻ đường cao AH. Gọi D là điểm đối xứng với H qua AB, M là giao điểm của AB và HD, gọi E là điểm đối xứng với H qua AC, N là giao điểm của AC và HE.Chứng minh:
a) Tam giác ABC vuông.
b) AH = MN.
c) D đối xứng với E qua A. Gọi F là trung điểm BC. Chứng minh AF vuông góc với MN.
a) Để chứng minh tam giác ABC vuông, ta cần chứng minh rằng tổng bình phương hai cạnh góc nhọn bằng bình phương cạnh huyền.
Áp dụng định lý Pythagoras, ta có:
AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100
BC^2 = 10^2 = 100
Vậy AB^2 + AC^2 = BC^2, từ đó ta có thể kết luận rằng tam giác ABC là tam giác vuông tại góc A.
b) Ta có:
- H là chân đường cao từ A xuống BC, nên AH là đường cao của tam giác ABC.
- D là điểm đối xứng với H qua AB, nên AD = AH.
- M là giao điểm của AB và HD, nên AM là trung tuyến của tam giác AHD, do đó AM = MD.
- E là điểm đối xứng với H qua AC, nên AE = AH.
- N là giao điểm của AC và HE, nên AN là trung tuyến của tam giác AHE, do đó AN = NE.
Từ đó, ta có AH = AD = AE và AM = MD, AN = NE.
Vậy ta có thể kết luận rằng AH = MN.
c) Để chứng minh D đối xứng với E qua A, ta cần chứng minh rằng AD = AE và góc DAE = 180 độ.
Ta đã chứng minh trong phần b) rằng AD = AE.
Để chứng minh góc DAE = 180 độ, ta cần chứng minh rằng góc DAB + góc BAE = 180 độ.
Vì tam giác ABC là tam giác vuông tại A (chứng minh trong phần a)), nên góc DAB + góc BAE = 90 độ + 90 độ = 180 độ.
Từ đó, ta có thể kết luận rằng D đối xứng với E qua A.
Đồng thời, F là trung điểm BC, nên AF song song với HD (do D là điểm đối xứng với H qua AB) và AF song song với HE (do E là điểm đối xứng với H qua AC).
Vậy ta có thể kết luận rằng AF vuông góc với MN.
cho tam giác abc vuông tại a,ah là đườnG cao . gọi d là điểm đối xứng vs h qua AB vaElà điiểm đối xứng với h qua AC. gọi I là giao điểm của AB và DH, K là giao điểm của AC và HE. a) tứ giác AIHK là hình gì? vì sao b)c/m 3 diểm D,A,E thẳng hàng,c) C/M CB =BD+CE
a: H đối xứng D qua AB
nên ABlà trung trực của HD
=>AH=AD và ABvuông góc với HD tại I
=>ΔAHD cân tại A
=>AB là phân giác của góc HAD(1)
H đối xứng E qua AC
nên AC vuông góc với HE tại trung điểm của HE
=>AC là phân giác của góc HAE(2)
Xét tứ giác AIHK có
góc AIH=góc AKH=góc KAI=90 độ
nên AIHK là hình chữ nhật
b: Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
c: BD+CE=BH+CH=BC
Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC). Qua H kẻ HD,HE theo thứ tự vuông góc với AB,AC( D thuộc AB,E thuộc AC).
a) Tứ giác AEHD là hình gì? Vì sao?
b) Vẽ hai điểm M, N lần lượt đối xứng với H qua D và E. Chứng minh M đối xứng với N qua A
c) Gọi I là trung điểm của BC. Chứng minh AI//NC