chứng tỏ các đa thức sau vô nghiệm
a)4x^2 -10x + 9
b)-1 +x -x^2
1.Chứng minh các phương trinh sau đây vô nghiệm
A.2(x+3)-4=2x-5
B.2(1-4x)-7=-8x
a) \(2\left(x+3\right)-4=2x-5\)
\(\Leftrightarrow2x+6-4=2x-5\Leftrightarrow2=-5\left(VLý\right)\Rightarrowđpcm\)
b) \(2\left(1-4x\right)-7=-8x\)
\(\Leftrightarrow2-8x-7=-8x\Leftrightarrow-5=0\left(VLý\right)\Rightarrowđpcm\)
A) 2(x+3)-4=2x-5
<=> 2x+6-4-2x+5=0
<=> 7 = 0(vô lý )
Vậy .....
B) 2(1-4x)-7=-8x
<=> 2-8x-7+8x=0
<=>-5=0(vô lí )
Vậy.....
Chứng minh các bất phương trình sau vô nghiệm
a \(x^2+2x+2\le0\)
b \(4x^2-4x+5\le0\)
Giúp mk với
\(a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\)
\(=>bpt:x^2+2x+2\le0\left(vo-li\right)\)
=>bpt vô nghiệm
\(b,4x^2-4x+5=\left(2x-1\right)^2+4\ge4>0\)
\(=>bpt:4x^2-4x+5\le0\left(vo-li\right)\)
=>bpt vô nghiệm
a, \(< =>x^2+2x+1+1\le0\)
\(< =>\left(x+1\right)^2+1\le0\) vô nghiệm với mọi x thuộc R
b, \(< =>\left(2x-1\right)^2+4\le0\)vô nghiệm với mọi x thuộc R
\(a.\)
\(x^2+2x+2=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1\ge1\)
\(b.\)
\(4x^2-4x+5=4x^2-4x+1+4\)
\(=\left(2x-1\right)^2+4\ge4\)
chứng tỏ đa thức sau không có nghiệm a)x^2+5x+15 b)4x^2-10x+9 c)-1+x-x^2
chứng tỏ đa thức M(x)=x^4+2x^3+4x^2-1 vô nghiệm
Chứng tỏ rằng đa thức sau vô nghiệm
a. 4x2 + 4x + 2
b. x2 + x +1
c. -x2 + 2x -3
a) 4x2+4x+2
=4x2+2x+2x+2
=2x.(2x+1)+2x+1+1
=2x.(2x+1)+(2x+1)+1
=(2x+1)2+1
Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm
b) x2+x+1
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm
Phần c để tớ nghĩ đã
Chứng minh các đa thức sau vô nghiệm:
a. A(x) = x^4 - 8x^2 +30
b. B(x) = 4x^2 - 4x +3
c. C(x) = x^2 - 3x +7
d. D(x) = -x^2 - 7x - 20
e. H(x) = 2x^2 - 10x+20
Viết các đa thức dưới sau dưới dạng bình phương của một tổng hoặc một hiệu
a) x^2 + 6x + 9
b) 25 + 10x + x^2
c) x^2 + 8x + 16
d) x^2 + 14x + 49
e) 4x^2 + 12x + 9
f) 9x^2 + 12x + 4
h) 16x^2 + 8x + 1
i) 4x^2 + 12xy + 9y^2
k) 25x^2 + 20xy + 4y^2
a. x2 + 6x + 9 = (x + 3)2
b. 25 + 10x + x2 = (5 + x)2
c. x2 + 8x + 16 = (x + 4)2
d. x2 + 14x + 49 = (x + 7)2
e. 4x2 + 12x + 9 = (2x + 3)2
f. 9x2 + 12x + 4 = (3x + 2)2
h. 16x2 + 8 + 1 = (4x + 1)2
i. 4x2 + 12xy + 9y2 = (2x + 3y)2
k. 25x2 + 20xy + 4y2 = (5x + 2y)2
a) \(=\left(x+3\right)^2\)
b) \(=\left(x+5\right)^2\)
c) \(=\left(x+4\right)^2\)
d) \(=\left(x+7\right)^2\)
e) \(=\left(2x+3\right)^2\)
f) \(=\left(3x+2\right)^2\)
h) \(=\left(4x+1\right)^2\)
i) \(=\left(2x+3y\right)^2\)
k) \(=\left(5x+2y\right)^2\)
Chứng tỏ rằng đa thức x^2 + 4x +5 vô nghiệm
Đặt f(x)= \(x^2+4x+5\) \(=x^2+2x+2x+4+1\)
\(=\left(x^2+2x\right)+\left(2x+4\right)+1\)
\(=x\left(x+2\right)+2\left(x+2\right)+1\)
\(=\left(x+2\right)\left(x+2\right)+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\)
\(\Rightarrow f\left(x\right)>0\forall x\)
=> Đa thức f(x) trên vô nghiệm
Ta có : \(x^2+4x+5=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\)
\(\Rightarrow\) Đa thức \(x^2+4x+5\) vô nghiệm
chứng minh rằng các đa thức sau không có nghiệm
a) \(\left(2x-3\right)^2+10\)
b) \(x^2+2x+4\)
c) \(3x^2-x+5\)
a. ta có
(2x − 3)2 ≥ 0
=> (2x − 3)2 + 10 > 0
=> đa thức trên ko có nghiệm
b. ta có:
x2 ≥ 0
4 > 0
=> x2 + 4 > 0
=> x2 + 2x + 4 > 0
=> đa thức trên ko có nghiệm
câu c mik vẫn chưa biết chứng minh vì bài này lần đầu tiên làm. Sorry bạn !!!