Tìm GTNN của \(A=a-\sqrt{a}\) \(\left(ĐK:a>0\right)\)
a) \(\sqrt{27a}\cdot\sqrt{3a}\left(ĐK:a>0\right)\)
b) \(\dfrac{\sqrt{8a^4b^6}}{\sqrt{64a}^6b^6}\left(a< 0,b\ne0\right)\)
a; \(\sqrt{27a}\cdot\sqrt{3a}=\sqrt{81a^2}=9a\)
b: \(\dfrac{\sqrt{8a^4b^6}}{\sqrt{64a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=\dfrac{-\sqrt{2}}{4a}\)(do a<0)
\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\left(ĐK:a\ge0,a\ne1\right)\)
ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}.\frac{1-\sqrt{a}+a-\sqrt{a}}{1-\sqrt{a}}\)
\(=\frac{1+2\sqrt{a}+a}{\sqrt{a}+1}.\frac{1-2\sqrt{a}+a}{1-\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.\frac{\left(1-\sqrt{a}\right)^2}{1-\sqrt{a}}\)
\(=\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\left(\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}\right)\left(\frac{1-\sqrt{a}+a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\frac{a+2\sqrt{a}+1}{\sqrt{a}+1}.\frac{a-2\sqrt{a}+1}{1-\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.-\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\)
\(=-\left(\sqrt{a}+1\right).\left(\sqrt{a}-1\right)\)
\(=1-a\)
A= \(\left(\frac{2\sqrt{a}}{\sqrt{a}+3}+\frac{\sqrt{a}}{\sqrt{a}-3}-\frac{3a-3}{a-9}\right):\left(\frac{2\sqrt{a}-2}{\sqrt{a}-3}-1\right)đk:a\ge0;a\ne9\)
a. Rút gọn A
b. Tìm a để A<\(\frac{1}{2}\)
c. Tìn giá trị nguyên của a để A nhận giá trị nguyên
d. Tìm GTNN của P
a) A = \(\left(\frac{2\sqrt{a}\left(\sqrt{a}-3\right)}{a-9}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{a-9}-\frac{3a-3}{a-9}\right):\left(\frac{2\sqrt{a}-2}{\sqrt{a}-3}-\frac{\sqrt{a}-3}{\sqrt{a}-3}\right)\) (quy đồng lên thôi)
\(=\left(\frac{2a-6\sqrt{a}}{a-9}+\frac{a+3\sqrt{a}}{a-9}-\frac{3a-3}{a-9}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-3}\right)\) (khai triển)
\(=\left(\frac{-3\sqrt{a}+3}{a-9}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-3}\right)\) (rút gọn)
\(=\frac{-3\left(\sqrt{a}-1\right)}{a-9}.\frac{\sqrt{a}-3}{\sqrt{a}+1}=\frac{-3\left(\sqrt{a}-1\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{a}+1\right)}=\frac{-3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{-3\left(t-1\right)}{\left(t+3\right)\left(t+1\right)}\left(\text{đặt }\sqrt{a}=t\ge0\right)\)
b) Để A < 1/2 thì \(\frac{-3\left(t-1\right)}{\left(t+3\right)\left(t+1\right)}< \frac{1}{2}\Leftrightarrow-3\left(t-1\right)< \frac{1}{2}\left(t+3\right)\left(t+1\right)\)
\(\Leftrightarrow-3t+3< \frac{1}{2}\left(t^2+4t+3\right)\)
\(\Leftrightarrow-6t+6< t^2+4t+3\)
\(\Leftrightarrow t^2+10t-3>0\)
Giải ra nhưng số xấu quá:(
c) + d) Bí
Sai thì chịu:(
Cho P=\(\left(\frac{2a+1}{a\sqrt{a}-1}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\times\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\left(ĐK:a\ge0,a\ne1\right)\)
a) Rút Gọn P
b) Xét Dấu Của Biểu Thức \(P\times\sqrt{1-a}\)
Mong mọi người giúp đỡ mình , mình đang cần gấp , cảm ơn mọi người
Ta có HĐT : \(\hept{\begin{cases}a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\\a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\end{cases}\left(a,b\ge0\right)}\)
\(P=\left(\frac{2a+1}{a\sqrt{a}-1}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\times\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)
ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
\(=\left(\frac{2a+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\times\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
\(=\left(\frac{2a+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\times\left(\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\)
\(=\left(\frac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\times\left(1-\sqrt{a}+a-\sqrt{a}\right)\)
\(=\frac{a+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\times\left(a-2\sqrt{a}+1\right)\)
\(=\frac{1}{\sqrt{a}-1}\times\left(\sqrt{a}-1\right)^2\)
\(=\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}=\sqrt{a}-1\)
b) \(P\times\sqrt{1-a}\)
\(=\left(\sqrt{a}-1\right)\times\sqrt{1-a}\)
ĐKXĐ: \(0\le x< 1\)
Với \(0\le x< 1\)
Ta có :\(\hept{\begin{cases}\sqrt{a}\le\sqrt{1}=1\Rightarrow\sqrt{a}-1\le0\\\sqrt{1-a}\ge0\end{cases}}\)
\(\Rightarrow\left(\sqrt{a}-1\right)\left(\sqrt{1-a}\right)\le0\)
Phần b là sao vậy tôi không hiểu lắm
Chứng minh bất đẳng thức: \(\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\left(ĐK:a\ge1\right)\)
\(\Leftrightarrow2\sqrt{a\left(a+1\right)}-2a< 1\)
Lại có:\(2\sqrt{a\left(a+1\right)}\le a+a+1=2a+1\)
\(\Rightarrow2\sqrt{a\left(a+1\right)}-2a\le2a+1-2a=1\)
Dấu "=" không xảy ra
\(\Rightarrow\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\)(đpcm)
a, Cho x,y,z >0 thỏa điều kiện x+y+z=3. Tìm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
b, cho x >1 , y>1. Tìm GTNN của A=\(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
cho a>0; b>0 và \(\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=4\)tìm GTNN của M = \(\frac{a^2}{b}+\frac{b^2}{a}\)
\(\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=4\Leftrightarrow\sqrt{ab}+\sqrt{a}+\sqrt{b}=3\)
\(\text{Ta có:}M\ge a+b\Rightarrow2M+2\ge a+b+a+1+b+1\ge2\left(\sqrt{ab}+\sqrt{a}+\sqrt{b}\right)\left(\text{theo cô si}\right)=6\)
\(\Rightarrow M\ge2\left(\text{dấu "=" xảy ra khi:}a=b=1\right)\)
Cho a,b > 0 và a2+b2=1 Tìm GTNN của BT sau :
\(A=\dfrac{1}{a}+\dfrac{1}{b}-\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}}\right)^2\)
\(A=\dfrac{1}{a}+\dfrac{1}{b}-\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)=\dfrac{1-a+b}{b}+\dfrac{1-b+a}{a}\)
Vì \(a^2+b^2=1\) và \(a,b>0\Leftrightarrow0< a< 1;0< b< 1\Leftrightarrow1+a-b>0;1-b+a>0\)
\(\Leftrightarrow A\ge2\sqrt{\dfrac{\left(1-a+b\right)\left(1-b+a\right)}{ab}}=2\sqrt{\dfrac{1-a^2-b^2+2ab}{ab}}=2\sqrt{2}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=1\\\dfrac{1-a+b}{b}=\dfrac{1-b+a}{a}\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{\sqrt{2}}\)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y.\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(\Leftrightarrow A=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\right]:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{2\sqrt{xy}+x+y}{xy}:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{\sqrt{xy}\left(x+y\right)}{xy\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\Leftrightarrow A=\frac{\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
sai sót chỗ nào chỉ cho mk nhé. ý kia chốc nx làm nốt