Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
James Pham
Xem chi tiết
Đào Tùng Dương
25 tháng 2 2022 lúc 22:33

undefined

ILoveMath
25 tháng 2 2022 lúc 22:35

\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)

\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)

Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)

\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)

Bmin=-168\(\Leftrightarrow\)m=-16

 

Gallavich
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 16:23

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

34 9/10 Chí Thành
Xem chi tiết
Thanh Hoàng Thanh
10 tháng 3 2022 lúc 23:05

\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)

\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)

Bảo Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 14:15

=>2*(x1x2)^2-(x1+x2)^2+2x1x2=8

Nguyễn Minh Quân
Xem chi tiết
Trần Tuấn Hoàng
11 tháng 2 2023 lúc 20:24

Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.

Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)

Coi phương trình (2) là phương trình ẩn m tham số C, ta có:

\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)

Để phương trình (2) có nghiệm thì:

\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)

\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)

\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)

Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 22:05

\(x^2-4x-6=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)

=>Phương trình này có hai nghiệm phân biệt

Theo vi-et, ta có:

\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4^2-2\cdot\left(-6\right)=16+12=28\)

\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)

\(C=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)

\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)

\(D=\left|x_1-x_2\right|\)

\(=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)

KHANH QUYNH MAI PHAM
Xem chi tiết
Nguyễn thị hằng
Xem chi tiết
alibaba nguyễn
20 tháng 1 2017 lúc 8:31

Ta có để pt có 2 nghiệm phân biệt thì:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)

\(\Leftrightarrow m< 2\)

Theo vi-et ta có

\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)

Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)

\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow19m+52=0\)

\(\Leftrightarrow m=\frac{52}{19}\)(loại)

Không có m thỏa cái trên

PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé

Nguyễn thị hằng
20 tháng 1 2017 lúc 21:42

Mơn bạn nhiều <3

Ngọc Trương
Xem chi tiết
Nguyen Thi Trinh
3 tháng 6 2017 lúc 11:27

Xét pt (1) có:

\(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)

= \(4m^2-4m+8\)

= \(\left(2m-1\right)^2+7>0\)

\(\Rightarrow\) Pt (1) luôn có 2 nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\)

\(\Leftrightarrow2-x_2+2x_1-x_1x_2+2-x_1+2x_2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2+2\) \(\Leftrightarrow-\left(x_1+x_2\right)+2\left(x_1+x_2\right)+2-\left(x_1+x_2\right)^2=0\)

\(\Leftrightarrow-\left(x_1+x_2\right)\left[1-2+\left(x_1+x_2\right)\right]+2=0\)

\(\Leftrightarrow-2m\left(2m-1\right)+2=0\)

\(\Leftrightarrow-4m^2+2m+2=0\)

\(\Leftrightarrow\left(m-1\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-1=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy để pt (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\) thì \(m=1\) hoặc \(m=\dfrac{-1}{2}\)

Mysterious Person
3 tháng 6 2017 lúc 13:18

\(\Delta\)' = m2 - m + 2 = m2 - 2.m.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) + 2 = \(\left(m-\dfrac{1}{2}\right)^2\) + \(\dfrac{7}{4}\) \(\ge\) \(\dfrac{7}{4}\) > 0

\(\Rightarrow\) phương trình luôn có 2 nghiệm \(\forall\)m

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)

(1 + x1)(2 - x2) + (1 + x2)(2 - x1) = x12 + x22 + 2

2 - x2 + 2x1 - x1x2 + 2 - x1 + 2x2 - x1x2 = (x1 + x2)2 - 2x1x2 + 2

= (x1 + x2)2 - (x1 + x2) - 2 = 0

thay vào ta có : (2m)2 - 2m - 2 = 0

4m2 - 2m - 2 = 0 ta có : a + b + c = 4 - 2 - 2 = 0

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

m1 = 1 ; m2 = \(\dfrac{c}{a}\) = \(-\dfrac{1}{2}\)

vậy m = 1 ; m = \(-\dfrac{1}{2}\) thảo mảng điều kiện bài toán

Ngọc Trương
3 tháng 6 2017 lúc 11:08

Đáp án của mình là :

\(m_1=1;m_2=-\dfrac{1}{2}\)

Mấy bạn nếu thấy sai sửa lại dùm mình nhé, mình cảm ơn !