-3x4+x2+x-3 tìm nghiệm của đa thức
Tìm nghiệm của đa thức f(x)=(x2-2)(3x4+6)
Cho `f(x)=0`
`=>(x^2-2)(3x^4+6)=0`
Mà `3x^4+6 > 0 AA x`
`=>x^2=2`
`=>x^2=2`
`=>x=+-\sqrt{2}`
Vậy nghiệm của đa thức `f(x)` là `x=\sqrt{2}` hoặc `x=-\sqrt{2}`
cho f(X) = 0
\(=>\left(2x-2\right)\left(3x.4+6\right)=0\)
\(=>\left[{}\begin{matrix}2x-2=0\\12x+6=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=2\\12x=-6\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Bài 4: Cho các đa thức: A(x) = 4x3 + x2 – 2x – 3
B(x) = -3x4 + 2x -
C(x) = - 3x4 - x2 - 4x3
a/ Tính A(x) + B(x)
b/ Tìm nghiệm của H(x) = C(x)+ A(x) – B(x)
Dạng 3: Hình học
Bài 1: Cho tam giác ABC cân tại A ; AB = 5 cm; BC = 8 cm ; đường cao AH; BD là đường trung tuyến; G là trọng tâm tam giác
a/ Tính AH và BG
b/ Qua C kẻ đường thẳng d vuông góc với BC , đường thẳng này cắt BD tại E. Chứng minh AG = CE
c/ Chứng minh EA song song với CG
Bài 2: Cho ABC cân tại A; AM là đường trung tuyến; BI là đường cao. AM cắt BI tại H, CH cắt AB tại D.
a/ Chứng minh CD AB
b/ c/m BD = CI
c/ c/m DI // BC
d/ Tia phân giác của góc ACH cắt AH tại O. Tính số đo góc ADO
Bài 3: Cho ABC vuông tại A, đường phân giác BK. Kẻ KI vuông góc với BC (IBC)
a/ Chứng minh ABK = IBK
b/ Kẻ đường cao AH của ABC . C/m AI là tia phân giác của góc HAC
c/ Gọi F là giao điểm của AH và BK. C/m AFK cân và AF<KC
d/ Lấy M thuộc tia AH sao cho AM = AC. C/m IMIF
MỘT SỐ BÀI NÂNG CAO:
Bài 1: Tính giá trị của đa thức sau biết x+y-2 =0
M= x3 +x2y – 2x2 – xy – y2 + 3y +x – 1
Bài 2: Tìm giá trị nhỏ nhất của biểu thức sau:
(x2 – 9)2 + + 10
Bài 3:Tìm giá trị nhỏ nhất của biểu thức A =
Bài 4:Chứng tỏ rằng đa thức H(x) = 2x2 + 6x + 10 không có nghiệm.
HELP ;-;
Tìm nghiệm của đa thức :
a) A(x) = a2 + 5x
b) B(x) = x2 - x/2
c) C(x) = 2x2 + 4
d) D(x) = 3x4 + 7
b, Đặt \(B\left(x\right)=x^2-\dfrac{x}{2}=x\left(x-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x=0;x=\dfrac{1}{2}\)Vậy nghiệm đa thức B(x) là x = 0 ; x = 1/2
c, Đặt \(C\left(x\right)=2x^2+4=2\left(x^2+2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\ne0\\x^2=-2\left(voli\right)\end{matrix}\right.\)Vậy đa thức C(x) vô nghiệm
d, Đặt \(D\left(x\right)=3x^4+7=0\Leftrightarrow x^4=-\dfrac{7}{3}\left(voli\right)\)
Vậy đa thức D(x) vô nghiệm
a) Tìm giá trị của đa thức A = 3x4 + 5x2y2 + 2y4 + 2y2, biết rằng x2 + y2 = 2
b) Chứng tỏ rằng đa thức A(x) = 3x4 + x2 + 2018 không có nghiệm.
c) Xác định đa thức bậc nhất P(x) = ax + b biết rằng P(-1) = 5 và P(-2) = 7.
a) A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2
= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12
b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4 + x2 + 2018 > 0 với mọi x
Vậy đa thức A(x) không có nghiệm.
c) Tìm được P(x) = -2x + 3
Tìm nghiệm của các đa thức sau :
A) 3x4 + 4x2
B) x2 - 2x + 1
C) x2 - 3x + 2
D) 3x4 + 4x2
Cho 2 đa thức : P(x)=3x3−x2−2x4+3+2x3+x+3x4−x2−2x4+3+2x3+x+3x4 và Q(x)=−x4+x2=4x3−2+2x2−x−x3−x4+x2=4x3−2+2x2−x−x3
a) Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x)
c) Chứng tỏ rằng đa thức H(x)=P(x)+Q(x) không có nghiệm
Giúp mik nha
a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)
\(=2x^4+7x^3-2x^2+2x+6\)
\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-2x^4-10x^3+6x^2-2x-4\)
b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)
\(=-3x^3+4x^2+2\)
a) Tìm giá trị của đa thức A = 3x4 + 5x2y2 + 2y4 + 2y2, biết rằng x2 + y2 = 2
b) Chứng tỏ rằng đa thức A(x) = 3x4 + x2 + 2018 không có nghiệm.
c) Xác định đa thức bậc nhất P(x) = ax + b biết rằng P(-1) = 5 và P(-2) = 7.
a) A = 3x\(^4\) + 5x\(^2\)y\(^2\) + 2y\(^4\) + 2y\(^2\)
Đặt x\(^2\) = a, y\(^2\) = b ( a, b ≥ 0 ) khí đó:
a + b = 2
A = 3x\(^4\) + 5x\(^2\)y\(^2\) + 2y\(^4\) + 2y\(^2\)
⇒A = 3a\(^2\) + 5ab + 2b\(^2\) + 2b
⇒A = ( 3a\(^2\) + 3ab ) + ( 2b\(^2\) + 2ab ) + 2b
⇒A = 3a( a + b ) + 2b( a + b ) + 2b
⇒A = ( a + b )( 3a + 2b ) + 2b
⇒A = 2( 3a + 2b ) + 2b
⇒A = 2( 2a + 2b ) + 2a + 2b
⇒A = 4( a + b ) + 2( a + b )
⇒A = 4 \(\times\) 2 + 2 \(\times\) 2
⇒A = 12
a) A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2
= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12
b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4 + x2 + 2018 > 0 với mọi x
Vậy đa thức A(x) không có nghiệm.
c) Tìm được P(x) = -2x + 3
Cho đa thức: P (x) = 3x4 + x2 - 3x4 + 5
a) Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến.
b) Tính P( 0) và P(-3)
c) Chứng tỏ đa thức P(x) không có nghiệm .
a) \(P\left(x\right)=3x^4+x^2-3x^4+5\\ =x^2+5\)
b) \(P\left(0\right)=0^2+5=5\\ P\left(-3\right)=\left(-3\right)^2+5=-9+5=4\)
c) Ta có: x2 ≥ 0 với mọi x
Nên x2 + 5 > 5 hay f(x) > 5
Vậy đa thức P(x) không có nghiệm
a) \(P\left(x\right)=x^2+5\)
b) \(P\left(0\right)=0^2+5=5\)
\(P\left(-3\right)=\left(-3\right)^2+5=14\)
c) Để P(x) có nghiệm
<=> \(P\left(x\right)=0\)
<=> \(x^2+5=0\)
<=> \(x^2=-5\) (vô lívì \(x^2\ge0\left(\forall x\right)\))
=> P(x) không có nghiệm
1/ Cho 2 đa thức:
A (x) = 3x4 - 4x3 + 5x2 - 4x - 3
B (x) = - 3x4 + 4x3 - 5x2 + 2x + 6
a) Tính C (x) = A (x) + B (x)
b) Tìm nghiệm của đa thức C (x)
a: \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=3x^4-4x^3+5x^2-4x-3-3x^4+4x^3-5x^2+2x+6\)
=-2x+3
b: Đặt C(x)=0
=>-2x+3=0
hay x=3/2
Bài 3: cho đa thức P(x)= 5x3 - x4 + 2x - x2 + x4 + 2x2 - 5x3 - 3
a, thu gọn tìm bậc của đa thức
b, Chứng tỏ X=-3 ; x=1 là các nghiệm của đa thức P(x)
c, Tìm nghiệm của đa thức Q(x) biết Q(x) + P(x) = x2 - x
Cần gấp
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết