a) A = 3x\(^4\) + 5x\(^2\)y\(^2\) + 2y\(^4\) + 2y\(^2\)
Đặt x\(^2\) = a, y\(^2\) = b ( a, b ≥ 0 ) khí đó:
a + b = 2
A = 3x\(^4\) + 5x\(^2\)y\(^2\) + 2y\(^4\) + 2y\(^2\)
⇒A = 3a\(^2\) + 5ab + 2b\(^2\) + 2b
⇒A = ( 3a\(^2\) + 3ab ) + ( 2b\(^2\) + 2ab ) + 2b
⇒A = 3a( a + b ) + 2b( a + b ) + 2b
⇒A = ( a + b )( 3a + 2b ) + 2b
⇒A = 2( 3a + 2b ) + 2b
⇒A = 2( 2a + 2b ) + 2a + 2b
⇒A = 4( a + b ) + 2( a + b )
⇒A = 4 \(\times\) 2 + 2 \(\times\) 2
⇒A = 12
a) A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2
= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12
b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4 + x2 + 2018 > 0 với mọi x
Vậy đa thức A(x) không có nghiệm.
c) Tìm được P(x) = -2x + 3