\(\dfrac{2}{x^2-2x}=\dfrac{a}{x}+\dfrac{b}{x-2}\text{. Tính a+b}\),\(x\ne0,x\ne2\) , \(a,b\in Z\)
Câu 3: Cho biểu thức:
M= \(\dfrac{x^2}{x^2+2x}+\dfrac{2}{x+2}+\dfrac{2}{x}\) (với \(x\ne0\) và \(x\ne2\))
a, Rút gọn biểu thức M
b, Tính giá trị của biểu thức M khi \(x=-\dfrac{3}{2}\)
\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2x+4}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)
Khi \(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) \(\left(a\ne0,b\ne0,c\ne0\right)\)
Chứng minh rằng: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$
$\Rightarrow x=at; y=bt; z=ct$. Ta có:
$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$
Mặt khác:
$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$
Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)
Biết \(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{13x^2+2x+5}-\sqrt[3]{81x^2+ax+1}}{x^2+2x+1}=\dfrac{b}{c}\) Với \(a\in R;b\in Z,c\in N^{\text{*}}\) . Tính a+b+c
GIới hạn đã cho hữu hạn
\(\Rightarrow\sqrt[3]{13x^2+2x+5}-\sqrt[3]{81x^2+ax+1}=0\) có nghiệm \(x=-1\)
\(\Rightarrow a=18\)
Khi đó:
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{13x^2+2x+5}-\sqrt[3]{81x^2+18x+1}}{\left(x+1\right)^2}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(\sqrt[]{13x^2+2x+5}-\left(1-3x\right)\right)+\left(1-3x-\sqrt[3]{81x^3+18x+1}\right)}{\left(x+1\right)^2}\)
\(=...=\dfrac{17}{16}\)
Rút gọn các biểu thức sau:
a, P = (\(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\) ) : \(\dfrac{2x-6}{x^2+6x}\) ( với x \(\ne\) -6; x\(\ne6;x\ne0;x\ne3\))
b, S = (\(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\)) : \(\dfrac{3x-x^2}{2x^2-x^3}\) ( với \(x\ne0;x\ne-2;x\ne2\))
a) Tớ làm luôn nhé , không chép lại đề đâu
P = \(\left[\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right].\dfrac{x\left(x+6\right)}{2x-6}\)
ĐKXĐ : x # -6 ; x # 6 ; x # 0 ; x # 3 . Khi đó , ta có :
P = \(\left[\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]\).\(\dfrac{x\left(x+6\right)}{2x-6}\)
P = \(\dfrac{x^2-x^2+12x-36}{x-6}.\dfrac{1}{2x-6}\)
P = \(\dfrac{6\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}=\dfrac{6}{x-6}\)
b) Tương tự
Cho a; b; c; x; y; z và \(x^2-yz\ne0;y^2-zx\ne0;z^2-xy\ne0\) thỏa mãn \(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\). CMR \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
a:\(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}\left(b>0;a\ne4\right)\)
b:\(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne0\right)\)
c:\(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}\left(a>0;b\ne2\right)}\)
d:\(\dfrac{x}{\left(y-3\right)^2}.\sqrt{\dfrac{\left(y-3\right)^2}{x^2}\left(x>0;y\ne3\right)}\)
e:2x +\(\dfrac{\sqrt{1-6x+9x^2}}{3x-1}\)
a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)
b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(\sqrt{x}=a,\sqrt{y}=b\)
Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)
\(\Rightarrow B=x+\sqrt{xy}+y\)
Vậy...
c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)
d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)
a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)
= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)
=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)
= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)
b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)
=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )
= (x+\(\sqrt{xy}\)+y)
c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)
Tương tự câu a
d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)
tương tự câu a
e:2x +√1−6x+9x23x−1
= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)
= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)
=2x+\(\dfrac{3x-1}{3x-1}\)
=2x+1
\(\text{Cho }A=\left(\dfrac{3x^2+3}{x^3-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{1}{x-1}\right):\dfrac{2x^2-5x+5}{x-2}\)
\(\text{a, Rút gọn }\)
\(\text{b, Tìm }x\in Z\)\(\text{ để }A\in Z\)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
Cho a, b, x, y, z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). CMR: \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
Chứng minh:
a) \(x\ne0,y\ne0\) và \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
b) \(x\ne0,y\ne0,z\ne0\) và \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)