Rút gọn biểu thức:A=1+1/2+1/22+1/23+...+1/22012
Rút gọn biểu thức:
A=1 + 1/2 + 1/22 + 1/32 + ..... + 1/22012
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Sửa đề: 1/32=1/23
Giải:
A=1+1/2+1/22+1/23+..1/22012
2A=2+1+1/2+1/22+...+1/22011
2A-A=(2+1+1/2+1/22+...+1/22011)-(1+1/2+1/22+1/23+...+1/22012)
A=2-22012
Chúc bạn học tốt!
Cho S = 1 - 2 + 22 -23 +...+22012 - 22013 . Tính 3S - 22014
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
M = 1 + 22 + 23 + ... + 22012 / 22014 - 2
Tính M
Đặt N = 1 + 2 + 22 +...+ 22012
2N = 2 + 22 + 23 +...+ 22013
2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)
N = 22013 - 1
Thay N vào M ta được:
\(M=\dfrac{2^{2013}-1}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)Đặt \(N=1+2+2^2+...+2^{2012}\)
\(2N=2+2^2+2^3+...+2^{2013}\)
\(2N-N=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)
\(N=2^{2013}-1\)
Thay N vào M ta được:
\(M=\dfrac{2^{2013-1}}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)
Tham khảo link: https://olm.vn/hoi-dap/detail/80564627052.html
M = 1 + 22 + 23 + ... + 22012 / 22014 - 2
Tính M
Rút gọn biểu thức:
A = \(\dfrac{1}{2+\sqrt{3}}\) + \(\dfrac{1}{2-\sqrt{3}}\)
11. Rút gọn biểu thức:
A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)
\(\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}-1\right)\\ ...\\ 2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\\ 2A=3^{128}-1\)
Vậy \(A=\dfrac{3^{128}-1}{2}.\)
Rút gọn biểu thức:A=1+1/2 +1/22+1/23+...+1/22012
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
=>2A=\(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)=2-\frac{1}{2^{2012}}\)
=>A=\(\frac{2^{2013}-1}{2^{2012}}\)
Rút gọn biểu thức:
A=\(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)
`A=1/[\sqrt{3}+1]+1/[\sqrt{3}-1]`
`A=[\sqrt{3}-1+\sqrt{3}+1]/[3-1]`
`A=[2\sqrt{3}]/2=\sqrt{3}`
\(A=\dfrac{1}{\sqrt{3+1}}+\dfrac{1}{\sqrt{3-1}}\)
\(A=\dfrac{\sqrt{3-1+\sqrt{3+1}}}{\left(\sqrt{3+1}\right)\left(\sqrt{3-1}\right)}\)
\(A=\dfrac{2\sqrt{3}}{3-1}\)
\(A=\dfrac{2\sqrt{3}}{2}\)
\(A\sqrt{3}\)
\(A=\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)
\(A=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}\)
\(A=\dfrac{2\sqrt{3}}{2}\)
\(A=\sqrt{3}\)
Cho 2 biểu thức:
A = \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
B = \(\dfrac{1}{\sqrt{x}-1}\)
Rút gọn biểu thức A - B
\(A=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)