Cho hàm số: \(y=f\left(x\right)=x^2+5x\)
a) \(f\left(-1\right);f\left(-2\right);f\left(0\right)\)
b) Tìm x biết \(f\left(x\right)=-6\)
Giúp mk với, chiều nay mk nộp bài rồi!!!
Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên đoạn [1;2] thoả mãn \(f\left(1\right)=2\) và \(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2xf^2\left(x\right)\), ∀x ϵ [1;2]. Giá trị của \(\int_1^2f\left(x\right)dx\) bằng
A. \(1+\ln2\) B. \(1-\ln2\) C. \(\dfrac{1}{2}-\ln2\) D. \(\dfrac{1}{2}+\ln2\)
\(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2x.f^2\left(x\right)\)
\(\Rightarrow\dfrac{f\left(x\right)-\left(x+1\right)f'\left(x\right)}{f^2\left(x\right)}=2x\)
\(\Rightarrow\left[\dfrac{x+1}{f\left(x\right)}\right]'=2x\)
Lấy nguyên hàm 2 vế:
\(\dfrac{x+1}{f\left(x\right)}=\int2xdx=x^2+C\)
Thay \(x=1\Rightarrow\dfrac{2}{f\left(1\right)}=1+C\Rightarrow C=0\)
\(\Rightarrow f\left(x\right)=\dfrac{x+1}{x^2}\Rightarrow\int\limits^2_1\left(\dfrac{1}{x}+\dfrac{1}{x^2}\right)dx=\left(lnx-\dfrac{1}{x}\right)|^2_1=ln2+\dfrac{1}{2}\)
Cho hàm số \(y = f\left( x \right) = - {x^2} + 1\). Tính \(f\left( { - 3} \right);f\left( { - 2} \right);f\left( { - 1} \right);f\left( 0 \right);f\left( 1 \right)\).
\(f\left( { - 3} \right) = - {\left( { - 3} \right)^2} + 1 = - 9 + 1 = - 8\);
\(f\left( { - 2} \right) = - {\left( { - 2} \right)^2} + 1 = - 4 + 1 = - 3\);
\(f\left( { - 1} \right) = - {\left( { - 1} \right)^2} + 1 = - 1 + 1 = 0\);
\(f\left( 0 \right) = - {0^2} + 1 = 0 + 1 = 1\);
\(f\left( 1 \right) = - {1^2} + 1 = - 1 + 1 = 0\);
Cho hàm số y =f(x) xác định với mọi x \(\in R\). Biết rằng vs mọi x ta có:\(f\left(x\right)+4\left(2\right)=5x^2\). Tính \(f\left(-3\right)\)
HELP ME
Cho hàm số \(y=f\left(x\right)\) có đạo hàm \(f'\left(x\right)=\left(x-2\right)^2\left(x-1\right)\left(x^2-2\left(m+1\right)x+m^2-1\right)\) , \(\forall x\in R\) . Có bao nhiêu giá trị nguyên của m để hàm số \(g\left(x\right)=f\left(\left|x\right|\right)\) có 5 điểm cực trị ?
đi từ hướng làm để ra được bài toán:
Ta thấy muốn f(|x|) có 5 điểm cực trị thì f'(x) phải có 2 điểm cực trị dương
giải f'(x)=0 \(\left\{{}\begin{matrix}x=1\\x^2-2\left(m+1\right)x+m^2-1=0\left(2\right)\end{matrix}\right.\) phương trình (2) phải có 2 nghiệm phân biệt trái dấu nhau
Ta có: \(\Delta>0\Leftrightarrow m>-1\)
Theo yêu cầu bài toán: \(m^2-1>0\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\)
Cho hàm số \(y=f\left(x\right)\) là hàm số bậc bốn thỏa mãn \(f\left(0\right)=0\) .Hàm số \(y=f'\left(x\right)\) có bảng biến thiên như sau:
Hàm số \(g\left(x\right)=\left|f\left(x^2\right)-x^2\right|\) có bao nhiêu điểm cực trị?
A.1
B.3
C.5
D.7
Cho hàm số \(y = f\left( x \right) = {x^2} + 4\). Tính \(f\left( { - 3} \right);f\left( { - 2} \right);f\left( { - 1} \right);f\left( 0 \right);f\left( 1 \right)\)
\(f\left( { - 3} \right) = {\left( { - 3} \right)^2} + 4 = 9 + 4 = 13\);
\(f\left( { - 2} \right) = {\left( { - 2} \right)^2} + 4 = 4 + 4 = 8\);
\(f\left( { - 1} \right) = {\left( { - 1} \right)^2} + 4 = 1 + 4 = 5\);
\(f\left( 0 \right) = {0^2} + 4 = 0 + 4 = 4\);
\(f\left( 1 \right) = {1^2} + 4 = 1 + 4 = 5\).
Cho hàm số: y=f(x)=x2-5x+1
a) Tính \(f\left(\frac{-1}{2}\right);f\left(3\right)\)
b)Tìm x để f(x)=1
c) Các điểm sau đây có thuộc đồ thị hàm số không?
a) \(f\left(\frac{-1}{2}\right)\)
Thay x = -1/2 vào ta được: \(y=f\left(\frac{-1}{2}\right)=\left(\frac{-1}{2}\right)^2-5.\left(\frac{-1}{2}\right)+1=\frac{15}{4}\)
\(f\left(3\right)\)
Thay x = 3 vào ta được: \(y=f\left(3\right)=3^2-5.3+1=-5\)
b) Để f(x) = 1
Suy ra: \(x^2-5x+1=1\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy khi x = 0 hoặc x = 5 thì f(x) = 1
\(A\left(1;3\right)\)
Thay x = 1; y = 3 vào ta được: \(1^2-5.1+1\ne3\)
Vậy điểm \(A\left(1;3\right)\) không thuộc độ thị hàm số y = f(x) = x2 - 5x + 1
\(B\left(-1;7\right)\)
Thay x = -1; y = 7 vào ta được: \(\left(-1\right)^2-5.\left(-1\right)+1=7\) (thỏa)
Vậy điểm \(A\left(-1;7\right)\) thuộc đồ thị hàm số y = f(x) = x2 - 5x + 1
Cho hàm số \(y=f\left(x\right)\) xác định và có đạo hàm trên R thỏa mãn: \(\left[f\left(1+2x\right)\right]^3=8x-\left[f\left(1-x\right)\right]^2\), ∀x∈R. viết phương trình tiếp tuyến của đồ thị hàm số \(y=f\left(x\right)\) tại điểm có hoành độ bằng 1.
Cho hàm số \(y=f\left(x\right)\) có đạo hàm và liên tục trên \(\left[0;\dfrac{\pi}{2}\right]\)thoả mãn \(f\left(x\right)=f'\left(x\right)-2cosx\). Biết \(f\left(\dfrac{\pi}{2}\right)=1\), tính giá trị \(f\left(\dfrac{\pi}{3}\right)\)
A. \(\dfrac{\sqrt{3}+1}{2}\) B. \(\dfrac{\sqrt{3}-1}{2}\) C. \(\dfrac{1-\sqrt{3}}{2}\) D. 0
Cho hàm số y=f(x)y=f(x) có đạo hàm và liên tục trên [0;π2][0;π2]thoả mãn f(x)=f′(x)−2cosxf(x)=f′(x)−2cosx. Biết f(π2)=1f(π2)=1, tính giá trị f(π3)f(π3)
A. √3+1/2 B. √3−1/2 C. 1−√3/2 D. 0
\(f'\left(x\right)-f\left(x\right)=2cosx\)
\(\Leftrightarrow e^{-x}.f'\left(x\right)-e^{-x}.f\left(x\right)=2e^{-x}cosx\)
\(\Rightarrow\left[e^{-x}.f\left(x\right)\right]'=2e^{-x}.cosx\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow e^{-x}.f\left(x\right)=\int2e^{-x}cosxdx=e^{-x}\left(sinx-cosx\right)+C\)
Thay \(x=\dfrac{\pi}{2}\Rightarrow e^{-\dfrac{\pi}{2}}.1=e^{-\dfrac{\pi}{2}}+C\Rightarrow C=0\)
\(\Rightarrow f\left(x\right)=sinx-cosx\)
\(\Rightarrow f\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}-1}{2}\)