Giải các phương trình:
a) |x + 5| = 3x + 1;
b) |-5x| = 2x + 21.
giải các phương trình:
a)(x2+3x)(x2+3x+4)=-4
b)x(x+1)(x+2)(x+3)=24
Ta có (\(^{x^{2^{ }}^{ }+3x}\)) (\(^{x^{2^{ }}+3x+4}\))
Đặt \(x^{2^{ }^{ }}+3x\) là a ta có
a.(a+4)=-4
4a+\(a^2\) -4=0
\(^{ }\left(a-2\right)^2\)=0
Suy ra a=2
hay \(x^{2^{ }^{ }^{ }}+3x=2\)
\(x^2+3x-2=0\)
𝑥=−3±17√/2
Giải các phương trình:
a) (x - 7)(2x + 8) = 0
b) (3x +1)(5x - 2) = 0
c) (x - 1)(2x + 7)(x2 + 2) = 0
d) (2x - 1)(x + 8)(x - 5) = 0
a) (x - 7)(2x + 8) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\2x=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy: S = {7; -4}
b) Tương tự câu a
c) (x - 1)(2x + 7)(x2 + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\\x^2+2=0\end{matrix}\right.\)
Mà: x2 + 2 > 0 với mọi x
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{2}\right\}\)
d) (2x - 1)(x + 8)(x - 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=-8\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{1}{2};-8;5\right\}\)
a/ Pt \(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{7;-4\right\}\)
b/ pt \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\5x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)
c/ pt \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\) (\(x^2+2>0\forall x\))\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
d/ pt \(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)
a)(x-7)(2x+8)=0
⇔x-7=0 hoặc 2x+8=0
1.x-7=0⇔x=7
2.2x+8=0⇔2x=-8⇔x=-4
phương trình có 1 nghiệm x=7 và x=-4
b)(3x+1)(5x-2)=0
⇔3x+1=0 hoặc 5x-2=0
1.3x+1=0⇔3x=-1⇔x=-1/3
2.5x-2=0⇔5x=2⇔x=5/2
phương trình có 2 nghiệm x=-1/3 và x=5/2
Giải phương trình:
a) (3x+1)2-(2x-5)2=00
b) (x+3)(4-3x)=x2+6x+9
\(a,\left(3x+1\right)^2-\left(2x-5\right)^2=0\\ \Leftrightarrow\left(3x+1+2x-5\right)\left(3x+1-2x+5\right)=0\\ \Leftrightarrow\left(5x-4\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-6\end{matrix}\right.\\ b,\left(x+3\right)\left(4-3x\right)=x^2+6x+9\\ \Leftrightarrow\left(x+3\right)\left(4-3x\right)-\left(x+3\right)^2=0\\ \Leftrightarrow\left(x+3\right)\left(4-3x-x-3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(1-4x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{4}\end{matrix}\right.\)
1) giải các phương trình:
a) 11-2x=x-1
b) \(\dfrac{3x+2}{2}\)-\(\dfrac{3x+1}{6}\)=2x+\(\dfrac{5}{3}\)
c) \(\dfrac{x}{2x-6}\)+\(\dfrac{x}{2x+2}\)=\(\dfrac{-2x}{\left(3-x\right).\left(x+1\right)}\)
GIẢI CHI TIẾT AH
a: =>-3x=-12
=>x=4
b: =>3(3x+2)-3x-1=12x+10
=>9x+6-3x-1=12x+10
=>12x+10=6x+5
=>6x=-5
=>x=-5/6
c: =>x(x+1)+x(x-3)=4x
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=3(loại) hoặc x=0(nhận)
Giải phương trình:
a) |3x| = x+8
b) |x-3| = 2x+5
tham khảo
a) |3x| = x+8
|3x| = x + 8 (1)
+ TH1: Xét x ≥ 0, khi đó |3x| = 3x,
(1) ⇔ 3x = x + 8
⇔ 3x – x = 8
⇔ 2x = 8
⇔ x = 4 > 0 (thỏa mãn)
+ TH2: Xét x < 0, khi đó |3x| = -3x
(1) ⇔ -3x = x + 8
⇔ -3x – x = 8
⇔ -4x = 8
⇔ x = -2 < 0 (thỏa mãn)
Vậy phương trình có tập nghiệm S = {4; -2}.
b) |x-3| = 2x+5
Đáp án: PT có 2 nghiệm [x=5x=113[x=5x=113
Giải thích các bước giải:
TH1: x-3≥0 ⇔ x≥3
phương trình ⇔ x-3+3=2x-5⇔-x=-5⇔x=5
TH2; x-3≤0⇔x≤3
phương trình ⇔ 3-x+3=2x-5 ⇔-3x=-11 ⇔x=113
a)\(\left|3x\right|=x+8\Rightarrow\left[{}\begin{matrix}3x=x+8\\3x=-x-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=8\\4x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b)\(\left|x-3\right|=2x+5\Rightarrow\left[{}\begin{matrix}x-3=2x+5\\x-3=-2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3-2x-5=0\\x-3+2x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3-5=0\\3x-3+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=5\\3x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Giải phương trình:
a) \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
b) \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
Giải phương trình:
a) \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
b) \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
a) ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
Ta có: \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(\Leftrightarrow\dfrac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\dfrac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}\)
Suy ra: \(9x^2-6x+1-9x^2-6x-1=12\)
\(\Leftrightarrow-12x=12\)
hay x=-1(thỏa ĐK)
Vậy: S={-1}
giải phương trình:
a)5(x-1)+17x=1-4(3x+1)
b)x^2-6x+9=4x(x-3)
c)x^2-10x+24=0
a: =>5x-5+17x=1-12x-4
=>22x-5=-12x-3
=>34x=2
hay x=1/17
b: =>\(\left(x-3\right)^2-4x\left(x-3\right)=0\)
=>(x-3)(-3x-3)=0
=>x=3 hoặc x=-1
c: =>(x-4)(x-6)=0
=>x=4 hoặc x=6
Bài1:Giải phương trình:
a,(5-x)(3-2x)(3x+4)=0
b,(2x-1)(3x+2)(5-x)=0
c,(2x-1)(x-3)(x+7)=0
Giúp mình với :)
d,(3-2x)(6x+4)(5-8x)=0
a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)