Cho \(0\le a,b,c\le1\);ab+bc+ca=1.CMR:\(\dfrac{4a}{a+b}+\dfrac{3b}{b+c}+\dfrac{2c}{c+a}\le5\)
cho \(0\le a,b\le1\)chứng minh \(a^4+b^3+c^2-ab-bc-ac\le1\)
cho ba số dương \(0\le a\le b\le c\le1\) CMR \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
Vì \(0\le a\le b\le c\le1\) nên:
\(\left(a-1\right)\left(b-1\right)\ge ab+1\ge a+b\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\left(1\right)\)
Tương tự: \(\dfrac{a}{bc+1}\le\dfrac{a}{b=c}\left(2\right);\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\left(3\right)\)
Do đó: \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\left(4\right)\)
Mà: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\le\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(5\right)\)
Từ (4) và (5) suy ra \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\left(đpcm\right)\)
Cho \(0\le a\le b\le c\le1\). Tìm max
\(A=\left(a+b+c+3\right)\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
Bạn tham khảo:
Bài ni hay lắm mn Cho 3 số a , b , c thỏa mãn \(0\le a\le b\le c\le1\) Tìm giá trị lớn nhất của biểu thức \(B=\lef... - Hoc24
Cho \(0\le a,b,c\le1\).
CMR : \(a+b^2+c^3-ab-bc-ca\le1\)
Ta có: \((1-a)(1-b)(1-c)\geq 0\)
\(\Rightarrow 1-abc+(ab+bc+ca)-(a+b+c)\geq 0\)
\(\Rightarrow 1-(a+b+c)+(ab+bc+ca)\geq 0\)
\(\Rightarrow (a+b+c)-(ab+bc+ca)\leq 1\)
Vì \(a;b;c\in \left [ 0;1 \right ]\) nên \(b^{2}\leq b;c^{3}\leq c\)
\(\Rightarrow a+b^{2}+c^{3}-ab-bc-ca\leq a+b+c-(ab+bc+ca)\leq 1\)
Đẳng thức xảy ra khi \(b=c=1\) và \(a=0\)
cho a,b,c thuộc [0;1]. cmr $a+b^{2}+c^{3}+ab+bc+ca \leq 1$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Cho \(0\le a,b,c\le1\).CMR: \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)
ta có a(1-b) \(\ge\)a2(1-b); b(1-c) \(\ge\)b2(1-c); c(1-a) \(\ge\)c2(1-a)
suy ra (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)a(1-b)+b(1-c)+c(1-a)
=> (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)(a+b+c)-(ab+bc+ca)
mà (1-a)(1-b)(1-c) +abc\(\ge\)0 => 1\(\ge\)(a+b+c)-(ab+bc+ca)
vậy a2+b2+c2 \(\le\)1+a2b+b2c+c2a
dấu đẳng thức xảy ra <=> trong 3 số có 1 số bằng 0 và 1 số bằng 1
Ta có: \(a.\left(1-b\right)\ge a^2.\left(1-b\right)\)
\(b.\left(1-c\right)\ge b^2.\left(1-c\right)\)
\(c.\left(1-a\right)\ge c^2.\left(1-a\right)\)
Suy ra \(\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le a.\left(1-b\right)+b.\left(1-c\right)+c.\left(1-a\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le\left(a+b+c\right)-\left(ab+bc+ca\right)\)
Mà \(\left(1-a\right).\left(1-b\right).\left(1-c\right)+abc\ge0\) \(\Rightarrow1\ge\left(a+b+c\right)-\left(ab+bc+ca\right)\)
Vậy \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)
Dấu dẳng thức xảy ra \(\Leftrightarrow\)trong ba số đó có một số bằng 0, một số bằng 1
Trả lời:
Ta có: \(0\le a,b,c\le1\Rightarrow a.\left(1-a\right).\left(1-b\right)\ge0\)
\(\Leftrightarrow a-ab-a^2+ab\ge0\)
\(\Leftrightarrow a^2b\ge ab-a+a^2\)
Tương tự \(b^2c\ge bc-b+b^2\)
\(c^2a\ge ca-c+c^2\)
\(\Rightarrow a^2b+b^2c+c^2a+1\ge1+ab+bc+ca-a-b-c+a^2+b^2+c^2\)
\(\ge\left(1-a\right).\left(1-b\right).\left(1-c\right)+abc+a^2+b^2+c^2\)
\(\ge a^2+b^2+c^2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(a,b,c\right)\in\left\{\left(0,1,1\right),\left(1,0,1\right),\left(1,1,0\right),\left(0,0,1\right),\left(0,1,0\right),\left(1,0,0\right)\right\}\)
Cho \(0\le a\le b\le c\le1\) CMR : \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le2\)
Do \(a,b,c\in Z^+\)=> \(\frac{a}{a+b}>\frac{a}{a+b+c}\)\(\frac{b}{b+c}>\frac{b}{a+b+c}\)và \(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
Giả sử \(a\ge b\ge c\)Ta có \(a,b,c\in Z^+\)và \(a\ge b\)\(\Rightarrow\)\(c+a\ge c+b\)\(\Rightarrow\frac{c}{c+a}\le\frac{c}{c+b}\Rightarrow\frac{b}{b+c}+\frac{c}{c+a}\le\frac{b}{b+c}+\frac{c}{c+b}=1\)
Do \(a,b,c\in Z^+\)\(\Rightarrow\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Vậy \(\frac{a}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\le2\)
cho \(0\le a,b,c\le1\)
CMR \(a^2+b^2+c^2\le1+a^2b=b^2c+c^2a\)
cho \(0\le a,b,c\le1\)
Chứng minh: \(a^2+b^2+c^2-ab-bc-ac\le1\)
$a(a-1)\leq 0 <=> a^2\leq 0 => \sum a^2 \leq \sum a$
$(a-1)(b-1)(c-1)\leq 0 <=> a+b+c-\sum ab +abc -1 \leq 0$
$<=> \sum a^2 -\sum ab \leq a+b+c-\sum ab \leq 1-abc\leq 1$
^^ Mong olm dịch đ.c tatex mình ghi :v
http://imgur.com/a/oPw0z
Đây là bài làm của mình :)
cho a,b,c thỏa mãn 0 ≤ a,b,c ≤ 1. Cmr: \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)
Lời giải:
Vì $a,b,c\in [0;1]$ nên: \(a(a-1)(b-1)\geq 0\)
\(\Leftrightarrow a(ab-a-b+1)\geq 0\)
\(\Leftrightarrow a^2b\geq a^2+ab-a\)
Tương tự với \(b^2c; c^2a\) suy ra:
\(a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2+ab+bc+ac+1-a-b-c(1)\)
Lại có:
\((a-1)(b-1)(c-1)\leq 0\)
\(\Leftrightarrow (ab-a-b+1)(c-1)\leq 0\)
\(\Leftrightarrow abc-(ab+bc+ac)+a+b+c-1\leq 0\)
\(\Leftrightarrow ab+bc+ac+1\geq a+b+c+abc\geq a+b+c(2)\) do $abc\geq 0$
Từ \((1);(2)\Rightarrow a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2\) (đpcm)
Cho \(0\le a,b,c\le1\). Chứng minh \(a^2+b^2+c^2\le a^2b+b^2c+c^2a+1\)
Ta có \(a\left(1-a\right)\left(1-b\right)\ge0\)
\(\Leftrightarrow a^2b\ge a^2+ab-a\)
Tương tự \(b^2c\ge b^2+bc-b;c^2a\ge c^2+ca-a\)
\(\Rightarrow a^2b+b^2c+c^2a+1\ge a^2+b^2+c^2+ab+bc+ca-a-b-c+1\)\(=a^2+b^2+c^2+\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc\ge a^2+b^2+c^2\)
Hay \(a^2+b^2+c^2\le a^2b+b^2c+c^2a+1\)