Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng
Xem chi tiết
Hồng Phúc
12 tháng 3 2021 lúc 12:58

ngọc Đào
21 tháng 8 2024 lúc 21:48

hồng phúc ơi bạn cho mk hỏi tai sao x>-1/24 không t/m vậy ạ

 

bảo nguyễn
Xem chi tiết
YangSu
12 tháng 3 2023 lúc 18:16

Hàm số xác định \(\Leftrightarrow\left(m-2\right)x^2-2\left(m-3\right)x+m-1\ge0\)

Đặt \(f\left(x\right)=\left(m-2\right)x^2-2\left(m-3\right)x+m-1\ge0\)

\(f\left(x\right)\ge0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2>0\\\left[-2\left(m-3\right)\right]^2-4\left(m-2\right)\left(m-1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>2\\4\left(m^2-6m+9\right)-4\left(m^2-3m+2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow4m^2-24m+36-4m^2+12m-8\le0\)

\(\Leftrightarrow-12m+28\le0\)

\(\Leftrightarrow m\le\dfrac{7}{3}\)

\(KL:m\in(2;\dfrac{7}{3}]\)

Nguyễn Ngọc
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 12 2020 lúc 23:55

Hàm số xác định trên R khi và chỉ khi:

a.

\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)

b.

\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm

\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)

\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)

c.

\(x^2+6x+2m-3>0\) với mọi x

\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)

\(\Leftrightarrow m>6\)

e.

\(-x^2+6x+2m-3>0\) với mọi x

Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn

f.

\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)

\(\Leftrightarrow1< m< 3\)

Nguyễn Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 23:31

c: Để (d) vuông góc với (Δ) thì \(\left(6m+1\right)\cdot6=-1\)

\(\Leftrightarrow6m+1=-\dfrac{1}{6}\)

hay \(m=-\dfrac{7}{36}\)

Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 0:06

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)

Khánh ly
Xem chi tiết
Nguyễn Hân
Xem chi tiết
Lê Thị Thục Hiền
8 tháng 7 2021 lúc 11:20

1.Ý C

Hàm số có nghĩa khi \(x^2+14x+45\ne0\Leftrightarrow x\ne\left\{-5;-9\right\}\)

\(\Rightarrow D=R\backslash\left\{-5;-9\right\}\)

2. Ý D

Hàm số có nghĩa khi \(\left\{{}\begin{matrix}x+7\ge0\\x^2+6x-16\ne0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-7\\x\ne\left\{2;-8\right\}\end{matrix}\right.\)

\(\Rightarrow D=\)\([-7;+ \infty) \)\(\backslash\left\{2\right\}\)

Capheny Bản Quyền
21 tháng 9 2021 lúc 8:26

ĐK : \(x^2+14x+45\ne0\)   

\(\Leftrightarrow\hept{\begin{cases}x\ne-5\\x\ne-9\end{cases}}\)   

\(TXĐ:D=R\backslash\left\{-5;-9\right\}\)   

Chọn C 

Khách vãng lai đã xóa
Capheny Bản Quyền
21 tháng 9 2021 lúc 8:31

ĐK : \(\hept{\begin{cases}x+7\ge0\\x^2+6x-16\ne0\end{cases}}\)   

\(\Leftrightarrow\hept{\begin{cases}x\ge-7\\x\ne-8\\x\ne2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-7\\x\ne2\end{cases}}\)   

\(TXĐ:D=\left(-7;+\infty\right)\backslash\left\{2\right\}\)   

Chọn D 

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:44

a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)

Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)

b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)

Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)

c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)

Tập xác định \(D = \left( {1; + \infty } \right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 4 2017 lúc 5:11

Chọn C