Cho hình thang ABCD có AB song sing CD và AB nhỏ hơn CD. Gọi M;N lần lượt là trung điểm của hai đáy AB và CD thỏa mãn
MN = (CD - AB) :2. Chứng tỏ góc BCD + góc ADC = 90 độ
cho hình thang cân abcd có ab song song cd và ab nhỏ hơn cd biết ad=bc
a)chứng minh ab=bc
b)chứng minh db là phân giác góc adc
Đề bài có bị sai hay thiếu gì không bạn =)))
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Cho hình thang ABCD ( góc C+góc D=90 độ,AB song song vói CD,AB nhỏ hơn CD), M là trung điểm cửa AB,N là trung điểm của CD.CM: MN=(CD-AB) chia 2
Gọi K là giao điểm của AD và BC
\(\Rightarrow\) Tam giác KDC vuông tại K (do D+C=90) hay tam giác KAB vuông tại K
Gọi F là giao điểm của KM với CD
Áp dụng định lý Thales có:
\(\dfrac{AM}{DF}=\dfrac{KM}{KF}\)
\(\dfrac{KM}{KF}=\dfrac{MB}{FC}\)
\(\Rightarrow\dfrac{AM}{DF}=\dfrac{MB}{FC}\) mà AM=MB \(\Rightarrow DF=FC\)
\(\Rightarrow\) F là trung điểm của DC mà N cũng là tđ của DC
\(\Rightarrow F\equiv M\)
\(\Rightarrow\) K;M;N thẳng hàng
Áp dụng định lý Thales có:
\(\dfrac{KM}{KN}=\dfrac{AM}{DN}\Rightarrow\dfrac{KM}{AM}=\dfrac{KN}{DN}=\dfrac{KN-KM}{DN-AM}=\dfrac{MN}{\dfrac{1}{2}\left(DC-AB\right)}=\dfrac{2MN}{DC-AB}\)
Do đó \(\dfrac{KM}{AM}=\dfrac{2MN}{DC-AB}\)
Do M là tđ của AB mà tam giác KAB vuông tại K \(\Rightarrow KM=\dfrac{1}{2}AB\)
Lại có: \(AM=\dfrac{1}{2}AB\Rightarrow KM=AM\)\(\Rightarrow\dfrac{2MN}{DC-AB}=1\)
\(\Rightarrow MN=\dfrac{DC-AB}{2}\) (đpcm)
cho hình thang cân ABCD (AB song song CD ,AB nhỏ hơn CD), AE vuông góc CD ,BFvuông góc CD.Cm:
a.DE = CF
b.tứ giác ABFE là hình chữ nhật
Lời giải:
a) Vì $ABCD$ là hình thang cân nên $\widehat{D}=\widehat{C}$ và $AD=BC$
$\Rightarrow \frac{AD}{BC}=1$
Xét tam giác $ADE và $BCF$ có:
$\widehat{D}=\widehat{C}$ (cmt)
$\widehat{E}=\widehat{F}=90^0$
$\Rightarrow \triangle ADE\sim \triangle BCF$ (g.g)
$\Rightarrow \frac{DE}{CF}=\frac{AD}{BC}=1$
$\Rightarrow DE=CF$ (đpcm)
b) Vì $AB\parallel EF, EF\perp AE$ nên $AB\perp AE\Rightarrow \widehat{EAB}=90^0$
Tứ giác $ABFE$ có $\widehat{E}=\widehat{F}=\widehat{A}=90^0$ nên $ABFE$ là hình chữ nhật (đpcm)
Cho hình thang ABCD ( góc C+góc D=90 độ,AB song song vói CD,AB nhỏ hơn CD), m là trung điểm cửa AB,N là trung điểm của CD.CM: MN=CD-AB chia 2
Bạn viết lại đề được không ???
Đề hơi khó hiểu =))
cho hình thang ABCD ( với AB song song CD ) và AB nhỏ hơn CD
a )c/m AD+BC nhỏ hơn CD-AB
b) c/m CD-AB nhỏ hơn giá trị tuyệt đối AD-BC
cho hình thang cân ABCD có AB song song với CD AB nhỏ hơn CD Biết ad = ab a Chứng minh AB = BC b Chứng minh DB là tia phân giác của ADC
`a)` Vì ABCD là hình thang cân
`=> AD = BC`
Có `AB = AD`
`=> BC = AB`
`b)`
Có `AB = AD`(GT)
`=>` tam giác `ABD ` cân
`=>` góc ADB = góc ABD 2
Vì `ABCD` là hình thang cân nên :
`AB//DC`
`=>` góc ABD = góc BDC 1
từ `(1); (2) =>` góc ADB = góc BDC
`=>` BD là pg cưa góc ADC
a: ABCD là hình thang cân
=>AD=BC
mà AD=AB
nên AB=BC
b: góc ABD=góc ADB
góc ABD=góc BDC
=>góc ADB=góc BDC
=>DB là phân giác của góc ADC
cho hình thang abcd có ab song song cd m thuộc hình thang vẽ các hình bình hành abcd e f chứng minh rằng ef song song cd ab = ab + cd