cho tam giác ABC có 3 cạnh bằng nhau phân giác BD và CE cắt nhau tại D chứng minh rằng:
a)BD vuông góc với AC ; CE vuông góc với AB
b) OA = OB = OC
c)góc AOB = góc AOC = góc BOC
d) tính góc A góc B góc C
a)cho tam giác ABC có các đường cao BD và CE bằng nhau . Chứng minh rằng tam giác đó là một tam giác cân
b)Cho tam giác ABC cân tại A,đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC
Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.
Suy ra: AD ⊥ BC
Ta có: CH ⊥ AB (gt)
Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC
Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.
Vậy BD ⊥ AC.
ho tam giác abc vuông tại A có AB <AC .trên cạnh AC lấy D sao cho AD=AB. kẻ CE vuông góc với BD (E thuộc BD) a) chứng minh 2 góc EAC và EBC bằng nha b)kéo dài AB và CE cắt nhau tại F. CHứng minh diện tích tam giác FAE = diện tích tam giác ABCE
Cho tam giác ABC có AB = AC = BC, phân giác BD và CE cắt nhau tại O. Chứng minh rằng:
a) BD AC; CE AB.
b) OA = OB = OC.
Tham khảo
ĐÂY LÀ KÍ HIỆU GÓC NHA (^)
Vì 3 tam giác này có 3 góc bằng nhau :
⇒BACˆ×3=180⇒BAC^×3=180 độ
⇒BACˆ=60⇒BAC^=60 độ
⇒ABDˆ=30⇒ABD^=30 độ
⇒ABDˆ+BADˆ⇒ABD^+BAD^ = 90 độ
⇒ΔBAD⇒ΔBAD ⊥ D
⇒BD⇒BD ⊥⊥ ACAC
Vì CE là tia phân giác của BCAˆBCA^
⇒ECAˆ⇒ECA^ =30=30 độ
⇒EACˆ+ECAˆ=90⇒EAC^+ECA^=90 độ
⇒ΔAEC⊥E⇒ΔAEC⊥E
⇒EC⊥AB
cho tam giác ABC có ba góc nhọn,hai đường cao BD và CE của tam giác cắt nhau tại H (D€AC,E€AB ).Chứng minh rằng:
a) chứng minh 🔺ABC đồng dạng với tam giác AEC
b) chứng minh góc ADE= góc ABC
c) kẻ HK vuông góc BC (K€BC) .chứng minh BH.BD+CH.CE=BC mũ2
vẽ hình dùm lun nha mụi ngừi cảm ơn rất nhìu
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc ADE=góc ABC
cho tam giác ABC có ba góc nhọn,hai đường cao BD và CE của tam giác cắt nhau tại H (D€AC,E€AB ).Chứng minh rằng:
a) chứng minh 🔺ABC đồng dạng với tam giác AEC
b) chứng minh góc ADE= góc ABC
c) kẻ HK vuông góc BC (K€BC) .chứng minh BH.BD+CH.CE=BC mũ2
vẽ hình dùm lun nha mụi ngừi cảm ơn rất nhìu
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
BD=CE
góc ABD=góc ACE
=>ΔADB=ΔAEC
=>AB=AC
=>ΔABC cân tại A
b: ΔABC cân tại A
mà AD là đường phân giác
nên AD vuông góc BC
Xét ΔABC có
AD,CH là đường cao
AD cắt CH tại D
=>D là trực tâm
=>BD vuông góc AC
Cho tam giác abc có 3 cạnh bằng nhau .tia phân giác của góc B cắt AC tại D ; tia phân giác của góc C cắt AB tại E . Hai tia phân giác này cắt nhau tại O
Chứng minh rằng :a)BD vuông góc AC và CE vuông góc ABb)OA=OB=OCc)góc AOB = góc BOC = góc COA , từ đó suy ra số đo của mỗi góc đó.a,Vì tam giác ABC đều => BD,CE vừa là tia phân giác vừa là đường cao=>BD vuông góc AC và CE vuông góc AB
b, vì hai tia phân giác BD và CE cắt nhau tại O suy ra O là tâm tam giác ABC suy ra OA = OB = OC (tính chất)
c, ta có góc AOB + góc BOC + góc COA = 360 độ mà AOB = BOC= COA Suy ra 3 AOB= 360 suy ra AOB = 120 vậy AOB=BOC=COA=120
Cho tam giác ABC có hai góc B và C bằng nhau, tia phân giác góc B cắt cạnh AC tại D, tia phân giác góc C cắt cạnh AB tại E
a) Chứng minh tgADB = tgAEC
b) Gọi I là giao điểm của BD và CE . Chứng minh 2 tg IEB và IDC bằng nhau
Cho tam giác ABC có 3 cạnh bằng nhau. PHân giác BD, CE cắt nhau tịa O. Chính minh rằng:
a, BD vuông góc với AC
b, CE vuông góc với AB
c, Góc ACB = Góc BOC = Góc COA
Ta có hình vẽ sau:
a) Vì AB = BC = AC (gt)
=> ΔABC đều.
=> \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
Có: \(\widehat{ABD}\) = \(\widehat{CBD}\) = \(\frac{60^o}{2}\) = 30o
Trong ΔABD có:
\(\widehat{A}+\widehat{ABD}+\widehat{ADB}\) = 180o
hay 60o + 30o + \(\widehat{ADB}\) = 180o
=> \(\widehat{ADB}\) = 180o - 60o - 30o = 90o
Vì \(\widehat{ADB}\) = 90o
=> BD \(\perp\) AC (đpcm)
b) Cm tương tự ta có:
\(\widehat{A}+\widehat{ACO}+\widehat{AOC}\) = 180o
hay 60o + 30o + \(\widehat{AOC}\) = 180o
=> \(\widehat{AOC}\) = 180o - 60o - 30o = 90o
Vì \(\widehat{AOC}=90^o\)
=> CE \(\perp\) AB
Mình nghĩ cái hình của bạn như này :)
\(\Delta ABC\) là tam giác cân <=> \(\widehat{BAC}=\widehat{ABC}=\widehat{ACB}=60^o\)
a)BD là tia phân giác của \(\widehat{ABC}\) => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.60^o=30^o\)
\(\Delta BDC\) có: \(\widehat{DBC}+\widehat{BDC}+\widehat{BCD}=180^o\) (tổng 3 góc trong 1 tam giác)
=>\(30^o+\widehat{BDC}+60^o=180^o\Rightarrow\widehat{BDC}=180^o-60^o-30^o=90^o\)
=>Góc BDC là góc vuông => \(BD\perp AC\) (đpcm)
b)CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}=\frac{1}{2}.60^o=30^o\)
\(\Delta EBC\) có: \(\widehat{ECB}+\widehat{BEC}+\widehat{EBC}1=180^o\) (tổng 3 góc trong 1 tam giác)
=>\(30^o+\widehat{BEC}+60^o=180^o\Rightarrow\widehat{BEC}=180^o-60^o-30^o=90^o\)
=>Góc BEC là góc vuông => \(CE\perp AB\) (đpcm)
c) Câu này có vấn đề nhé bạn, mình tính ra góc ACB=60o, nhưng góc BOC=120o cơ :v