Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2023 lúc 14:46

Xét (O) có

CA,CM là tiếp tuyến

Do đó: OC là phân giác của \(\widehat{MOA}\)

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOD}+\widehat{MOC}\right)=180^0\)

=>\(2\cdot\widehat{DOC}=180^0\)

=>\(\widehat{DOC}=90^0\)

=>ΔDOC vuông tại O

Gọi N là trung điểm của CD

ΔOCD vuông tại O

=>ΔOCD nội tiếp đường tròn đường kính CD

mà N là trung điểm của CD

nên ΔOCD nội tiếp (N)

Xét hình thang ACDB có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ACDB

=>ON//AC//BD

=>ON\(\perp\)AB tại O

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó:AB là tiếp tuyến của (N)

=>Đường tròn đường kính CD tiếp xúc với AB

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 4 2023 lúc 10:18

góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

góc A chung

góc NBD=góc AEB

=>ΔABD đồng dạg vơi ΔAEB

=>AB/AE=AD/AB=BD/EB

Chứng minh tương tự, ta được: ΔACD đồng dạng với ΔAEC

=>AC/AE=CD/CE

mà AB=AC

nên AD/AB=AD/AC

=>BD/BE=CD/CE

=>BD*CE=BE*CD

góc M chung

góc MCN=góc MBC

=>ΔMCN đồng dạng với ΔMBC

=>MC/MB=MN/MC

=>MB*MN=MC^2=MA^2

=>MA/MB=MN/MA

=>ΔMAN đồng dạng với ΔMBA

=>góc MAN=góc MBA

=>BC là tiếp tuyến của (K)

=>BC vuông góc CK

pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2023 lúc 14:31

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó; ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>BC\(\perp\)AE tại C

Xét ΔBAE vuông tại B có BC làđường cao

nên \(BC^2=AC\cdot CE\)

b: Xét ΔABC vuông tại C có

\(sinCAB=\dfrac{CB}{AB}\)

=>\(\dfrac{CB}{10}=sin30=\dfrac{1}{2}\)

=>CB=5(cm)

Xét ΔEBA vuông tại B có BC là đường cao

nên \(\dfrac{1}{CB^2}=\dfrac{1}{BA^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BE^2}+\dfrac{1}{10^2}=\dfrac{1}{5^2}\)

=>\(\dfrac{1}{BE^2}=\dfrac{1}{25}-\dfrac{1}{100}=\dfrac{3}{100}\)

=>\(BE^2=\dfrac{100}{3}\)

=>\(BE=\dfrac{10}{\sqrt{3}}\left(cm\right)\)

Hue Do
Xem chi tiết
Khánh Vy
Xem chi tiết
Thanh Hoàng Thanh
2 tháng 1 2022 lúc 21:11

Xét (O; R):

AB là tiếp tuyến; B là tiếp điểm (gt).

=> OB vuông góc AB (Tính chất tiếp tuyến).

=> Tam giác ABO vuông tại B.

=> A; B; O thuộc đường tròn đường kính OA. (1)

Xét (O; R):

AC là tiếp tuyến; C là tiếp điểm (gt).

=> OC vuông góc AC (Tính chất tiếp tuyến).

=> Tam giác ACO vuông tại C.

=> A; C; O thuộc đường trong đường kính AO. (2)

Từ (1); (2) => A; B; O; C cùng thuộc đường tròn đường kính AO (đpcm).

Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 21:12

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

Nguyễn Thị Minh Chi
Xem chi tiết
Đặng Nguyễn Thu Giang
Xem chi tiết
phan tuấn anh
13 tháng 2 2016 lúc 21:41

bài này để mai được ko giờ mk bạn rùi 

Đặng Nguyễn Thu Giang
13 tháng 2 2016 lúc 21:44

ukm rứa cũng được mà nhớ sáng mai nge tại mình còn nhiều bài lắm. Cẳm ơn bạn trước

phan tuấn anh
14 tháng 2 2016 lúc 9:13

câu b mk nhìn quen lắm nhưng mk ko nhớ là mk làm ở đâu rồi còn câu d thì có lẽ C trùng B (CHẮC THẾ)

pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2023 lúc 14:26

a: Xét (D) có

ΔBFC nội tiếp

BC là đường kính

Do đó;ΔBFC vuông tại F

=>CF\(\perp\)FB tại F

=>CF\(\perp\)AB tại F

Xét (D) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)CE tại E

=>BE\(\perp\)AC tại E

Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,F cùng thuộc đường tròn (O), với O là trung điểm của AH

b: Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm

=>AH\(\perp\)BC

ΔABC cân tại A

mà AD là đường trung tuyến

nên AD\(\perp\)BC tại D

mà AH\(\perp\)BC và AH,AD có điểm chung là A

nên A,H,D thẳng hàng

=>O,H,D thẳng hàng

OH=OE

=>ΔOHE cân tại O

=>\(\widehat{OEH}=\widehat{OHE}\)

mà \(\widehat{BHD}=\widehat{OHE}\)(hai góc đối đỉnh)

và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{HBD}\right)\)

nên \(\widehat{OEH}=\widehat{BCE}\)

DB=DE

=>ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

\(\widehat{OED}=\widehat{OEH}+\widehat{DEH}\)

\(=\widehat{BCE}+\widehat{EBC}=90^0\)

=>DE là tiếp tuyến của (O)

Bùi Hương Giang
Xem chi tiết
Dangtheanh
29 tháng 12 2015 lúc 19:00

14 nhe ban

Nguyễn Khắc Vinh
29 tháng 12 2015 lúc 18:56

14

Bùi Hương Giang
29 tháng 12 2015 lúc 18:58

Ý của bạn là s