cho tam giác ABC nội tiếp đường tròn O,đường tròn K tiếp xúc trong vs đtròn O tại T và tiếp xúc 2 cạnh AB,AC tại E,F chưng minh tâm I đtròn nội tiếp tam giác ABC là trung điểm EF
Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn tâm I đường kính BH cắt AB tại E, đường tròn tâm O đường kính CH cắt AC tại F. CMR:
a, AH là tiếp tuyến chung của hai đường tròn (I) và (O) tại H.
b, EF là tiếp tuyến của (I) tại E, tiếp tuyến của (O) tại F.
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
Cho tam giác ABC nhọn AB<AC. Đường tròn (O) đường kính BC cắt AC, AB tại E và F. BE cắt CF tại H. AH cắt BC tại D. BC cắt EF tại M. Tiếp tuyến Bx của đường tròn (O) cắt AM tại N
a. CM ODEF nội tiếp
b. CM OD.OM=R2
Cho tam giác ABC nhọn nội tiếp (O), 2 đg cao BE,CF cắt nhau tại H. Kẻ đk AD của (O).Qua H kẻ đg d vuông góc AO tại K, d cắt AB,AC,BC tại M,N,S.
a)C/m A,E,F,K,H cùng e 1 đg tròn
b)C/m BCMN nội tiếp và SM.SN= SB.SC.
c) AH cắt (O) tại Q. C/m SQ^2 = SM.SN
d)C/m SI vuông góc OI.
cho (o r) và (i r) tiếp xúc ngoài tại a (R>r) dựng tiếp tuyến chung ngoài BC (B nằm trên đường tròn tâm O và C nằm trên đường tròn tâm I tiếp tuyến BC cắt tiếp tuyến tại A của hai đường tròn ở E
A- cmr tam giác ABC vuông ở A
B- OE cắt AB ở N ; IE cắt AC tại F cmr NEFA cùng nằm trên 1 đtron
C-cmr \(BC^2=4R\)
D- tính S tứ giác BCIO theo R;r
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho đường tròn (O;R) ,đường kính AB . Kẻ tiếp tuyến Ax với đương tròn tại A. Lấy điểm M thuộc tia Ax ,kẻ tiếp tuyến MC với đường tròn (O) tại C (C khác A) . Tiếp tuyến cảu đường tròn tại B cắt AC tại D và cắt MC ở F. Nối OM cắt AC tại E
1, Cm tứ giác OBDE nội tiếp
2, Cm \(AC.AD=4R^2\)
3, Cm AB là tiếp tuyến của đương tròn ngoại tiếp tam giác MOF
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF