Hs y=(k-3)x+k' .tìm các giá trị của k vài k'
a, đi qua điểm A (1;2);B (-3;4)
B, cắt trực tung tại điểmcó tung độ bằng 1-căn 2 và cắt trục hoành 1+căn 2
C,cắt đg thẳng 2y-4k+5=0
D, song song với đg thẳng y-2x-1
cho đường thẳng y= (k+1)x+k
a. tìm giá trị của k để đường thẳng (d) đi qua điểm (1;2)
b.tìm giá trị của k để đường thẳng (d)song song với đường thẳng y= 2x+3
c. tìm điểm cố định mà (d) luôn đi qua với mọi k
a) (d) đi qua điểm (1;2)
<=> 2 = k + 1 + k
<=> 1 = 2k
<=> k = 0,5
Vậy k = 0,5 thì (d) đi qua (1;2)
b) Để (d) // đgth y = 2x + 3
\(\Leftrightarrow\hept{\begin{cases}k+1=2\\k\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}k=1\\k\ne3\end{cases}\Rightarrow}k=1}\)
Vậy k =1 thì (d) // đgth y = 2x +3
c) Gọi điểm cố định là (d) đi qua là (x0;y0)
Ta có y0 = ( k +1) x0 + k
<=> y0 = kx0 + x0+k
<=> y0 - x0 - k ( x0 + 1) = 0 \(\forall\)k
Để pt nghiệm đúng với mọi k <=> \(\hept{\begin{cases}x_0+1=0\\y_0-x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=-1\end{cases}}}\)
Điểm cố định (d) luôn đi qua là ( -1;-1)
Cho hàm số y = ( k - 3 )x + k' ( d ) . Tìm các giá trị của k và k' để đường thẳng ( d ) thỏa mãn một trong các điều kiện sau
a. Đi qua điểm A( 1 ; 2 ) và B( -3 ; 4 )
b. Cắt trục tung tại điểm có tung độ bằng 1-√2 và cắt trục hoành tại điểm 1 + √2
c. Cắt đường thẳng 2y - 4x + 5 = 0
d. Song song với đường thẳng y - 2x -1 =0
e. Trùng với đường thẳng 3x + y - 5 = 0
a: Vì \(\left(d\right)\) đi qua \(A\left(1;2\right);B\left(-3;4\right)\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}k+k'-3=2\\-3\left(k-3\right)+k'=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k+k'=5\\-3k+k'=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4k=10\\k+k'=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{2}{5}\\k'=\dfrac{23}{5}\end{matrix}\right.\)
Cho đường thẳng y=(k+1)x+k (d) a) Tìm giá trị của k để đường thẳng (d) đi qua gốc tọa độ. b) Tìm giá trị của k để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1- căn2 c) Tìm giá trị của k để đường thẳng (d) song song với đường thẳng y=(căn3+1)x+3
a: Thay x=0 và y=0 vào \(\left(d\right)\), ta được:
k=0
Cho 3 đường thẳng :
x + y = 1 (d1)
x - y =1 (d2)
(k+1)x + (k-1)y = k +1 với k 1 (d3)
Tìm các giá trị của k để:
a) (d1) và (d3) vuông góc với nhau
b) (d1),(d2),(d3) đồng quy tại 1 điểm trong mặt phẳng tọa độ Oxy
c) CMR: Đường thẳng (d3) luôn luôn đi qua 1 điểm cố định trong mặt phẳng tọa độ Oxy
\(\left(d_1\right):y=-x+1\)
\(\left(d_2\right):y=x-1\)
\(\left(d_3\right):y=\dfrac{k+1}{1-k}x+\dfrac{k+1}{k-1}\)
a) Để (d1) và (d3) vuông góc với nhau:
\(\Leftrightarrow\left(-1\right)\left(\dfrac{k+1}{1-k}\right)=-1\)\(\Leftrightarrow k=0\)(thỏa)
Vậy k=0
b)Giao điểm của (d1) và (d2) là nghiệm của hệ \(\left\{{}\begin{matrix}y=-x+1\\y=x-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)
Để (d1);(d2);(d3) đồng quy\(\Leftrightarrow\) (d3) đi qua điểm (1;0)
\(\Rightarrow0=\dfrac{k+1}{1-k}.1+\dfrac{k+1}{k-1}\)\(\Leftrightarrow0=0\)(lđ)
Vậy với mọi k thì (d1);d2);(d3) luôn cắt nhau tại một điểm
c)Gỉa sử \(M\left(x_0;y_0\right)\) là điểm cố định mà (d3) luôn đi qua
Khi đó \(\left(k+1\right)x_0+\left(k-1\right)y_0=k+1\) luôn đúng với mọi k
\(\Leftrightarrow k\left(x_0+y_0-1\right)+x_0-y_0-1=0\) luôn đúng với mọi k
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\x_0-y_0-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=1\end{matrix}\right.\)
Vậy \(M\left(2;1\right)\) là điểm cố định mà (d3) luôn đi qua.
a) Tìm giá trị của k để các đường thẳng , và y = x + k – 1 đồng quy (cùng đi qua một điểm.)
b) Tìm giá trị của k để đường thẳng y = x + k – 1 tạo với các trục toạ độ một tam giác có diện tích
bằng 4,5 \(cm^2\)( đơn vị đo trên các trục toạ độ là cm)
Cho đường thẳng \(y=\left(k+1\right)x+k\) (1)
a) Tìm giá trị của k để đường thẳng (1) đi qua gốc tọa độ
b) Tìm giá trị của k để đường thẳng (1) cắt trục tung tại điểm có tung độ bằng \(1-\sqrt{2}\)
c) Tìm giá trị của k để đường thẳng (1) song song với đường thẳng \(y=\left(\sqrt{3}+1\right)x+3\)
a. k = 0
b. k = 1 -\(\sqrt{2}\)
c . k = \(\sqrt{3}\)
Cho hàm số \(y=\dfrac{\sqrt{k}+1}{\sqrt{3}-1}x+\sqrt{k}+\sqrt{3}\) (d)
a) Tìm giá trị của k để đường thẳng (d0 cắt trục tung tại điểm có tung độ bằng \(2\sqrt{3}\)
b) Tìm giá trị của k để đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 1
c) Chứng minh rằng, mọi giá trị \(k\ge1\), các đường thẳng (d) luôn đi qua một điểm cố định. Hãy xác định tọa độ của điểm cố định đó
Đk: \(k\ge0\)
a)
A(0,2\(\sqrt{3}\))
x=0
\(\Rightarrow y=\sqrt{k}+\sqrt{3}\)
\(\Rightarrow\sqrt{k}=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)
\(\Rightarrow k=3\) nhận
b)
\(B\left(1;0\right)\)
\(\Leftrightarrow\dfrac{\sqrt{k}+1}{\sqrt{3}-1}.1+\sqrt{k}+\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{k}+1+\sqrt{k}.\left(\sqrt{3}-1\right)+\sqrt{3}\left(\sqrt{3}-1\right)=0\)
\(\Leftrightarrow\sqrt{3}\sqrt{k}+4-\sqrt{3}=0\)
\(4>\sqrt{3}\Rightarrow Vo..N_0\)
(d) không đi qua điểm B(1;0)
c) Sửa đề \(k\ge0\)
\(\Leftrightarrow y=\dfrac{\sqrt{k}.x+x+\sqrt{3}\sqrt{k}-\sqrt{k}+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
\(\Leftrightarrow y=\dfrac{\sqrt{k}\left(x+\sqrt{3}-1\right)+x+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
Với \(x=1-\sqrt{3}\) => y=\(\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{3}-1\) không phụ thuộc k
Điểm cố định
D\(\left(\left(1-\sqrt{3}\right);\left(\sqrt{3}+1\right)\right)\)
Cho hàm số y = k + 1 3 - 1 . x + k + 3 (d)
Chứng minh rằng, với mọi giá trị k ≥ 0, các đường thẳng (d) luôn đi qua một điểm cố định. Hãy xác định tọa độ của điểm cố định đó.
Gọi điểm cố định mà các đường thẳng (d) đều đi qua P( x o , y o ).
Ta có:
Phương trình (*) nghiệm đúng với mọi giá trị không âm của k , do đó ta có:
Vậy, với k ≥ 0, các đường thẳng (d) đều đi qua điểm cố định P(1- 3 ; 3 – 1).
cho parabol (p): y=x2,đường thẳng (d) đi qua điểm N(-1;-2) có hệ số góc k
a, chứng minh rằng :với mọi giá trị k thì đường thẳng (d) luôn cắt (p) tại 2 điểm A,B.Tìm k để A,B nằm về 2 phía của trụ tung
b,gọi (x1,y1),(x2;y2) lần lượt là tọa độ của các điểm A,B nói trên . tìm k sao cho tổng ( x1+y1+x2+y2)đạt giá trị lớn nhất