Cho \(x,y\in\left[0;2\right]\). CM phương trình \(x^2+xy+y^2-3x-3y=0\)vô nghiệm
Cho hàm số \(f:Z^+\rightarrow R^+\) thỏa mãn các điều kiện
\(1.f_{\left(x\right)}=0\leftrightarrow x=0\)
\(2.f_{\left(xy\right)}=f_{\left(x\right)}f_{\left(y\right)}\left(\forall x,y\in Z^+\right)\)
\(3.f_{\left(x+y\right)}=f_{\left(x\right)}+f_{\left(y\right)}\left(\forall x,y\in Z^+\right)\)
Gọi \(n_o\) là số nguyên dương bé nhất trong các số nguyên dương m thõa mãn điều kiện \(f_{\left(m\right)}>1\). Chứng minh rằng với mọi số nguyên dương n ta đều có bất đẳng thức sau :
\(f_{\left(n\right)}< \dfrac{\left(f_{\left(n_o\right)}\right)^{1+\left[log_{n_o}n\right]}}{f_{\left(n_o\right)}-1}\)
\(\left[a\right]\) là phần nguyên của số thực \(a\)
Cho biểu thức :
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\) với \(\left(x,y,z\right)\in D=\left\{\left(x,y,z\right):x>0;y>0;z>0;x+y+x=1\right\}\)
Tìm giá trị lớn nhất của P
Ta có :
\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\) (1)
Theo bất đẳng thức Cô-si ta có :
\(\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge9\)
Vì \(x+y+z=1\) nên có
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{4}\)
Thế vào (1) ta có :
\(P\le\frac{3}{4}\) với mọi \(\left(x,y,z\right)\in D\)
Mặt khác lấy \(x=y=z=\frac{1}{3}\), khi đó \(\left(x,y,z\right)\in D\) ta có \(P=\frac{3}{4}\) vậy max \(P=\frac{3}{4}\)
Cho a,b,x,y là các số thực thỏa mãn \(\left\{{}\begin{matrix}x\in\left(0;a\right),y\in\left(0;b\right)\\a^2+y^2=b^2+x^2=2\left(ã+by\right)\end{matrix}\right.\)
Chứng minh rằng : ab + xy = 2(ay+bx)
Cho \(\left\{{}\begin{matrix}x +my=2\\mx-2y=1\end{matrix}\right.\)a) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho x lớn hơn 0 và y lớn hơn 0 b) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho (x; y) nguyên
a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m>\dfrac{1}{2}>0\)
Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0
cho \(y=f\left(x\right)=\left(m-3\right)x-2m+1\)
tìm đk của tham số m để \(f\left(x\right)>0\) \(\forall x\in\left[3;4\right]\)
TH1: \(m=3\Rightarrow f\left(x\right)=-5< 0\) với mọi x(ktm)
TH2: \(m>3\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow\min\limits_{\left[3;4\right]}f\left(x\right)=f\left(3\right)=3\left(m-3\right)-2m+1=m-8\)
\(m-8>0\Rightarrow m>8\)
TH3: \(m< 3\Rightarrow f\left(x\right)\) nghịch biến trên R
\(\Rightarrow\min\limits_{\left[3;4\right]}=f\left(4\right)=4\left(m-3\right)-2m+1=2m-11\)
\(2m-11>0\Rightarrow m>\dfrac{11}{2}\) (ktm điều kiện \(m< 3\))
Kết hợp lại ta được \(m>8\)
Tìm tất cả các hàm số \(f:\left(0;+\infty\right)\rightarrow\left(0;+\infty\right)\) thỏa mãn
\(f\left(x+f\left(y\right)+y\right)=f\left(2x\right)+f\left(y\right),\forall x,y\in\left(0;+\infty\right)\)
Cho biểu thức \(f\left(x\right)=\left(-x+1\right)\left(x-2\right)\).Khẳng định nào sau đây đúng và giải thích
A. \(f\left(x\right)< 0,\forall x\in\left(1;+\infty\right)\)
B. \(f\left(x\right)< 0,\forall x\in\left(-\infty;2\right)\)
C. \(f\left(x\right)>0,\forall x\in R\)
D. \(f\left(x\right)>0,\forall x\in\left(1;2\right)\)
Lời giải:
\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$
hay $x\in (1;2)$
Đáp án D
Cho hàm số y = f(x) có đạo hàm cấp hai trên \(\left(0;+\infty\right)\) thỏa mãn: \(2xf'\left(x\right)-f\left(x\right)=x^2\sqrt{x}cosx,\forall x\in\left(0;+\infty\right)\) và \(f\left(4\Pi\right)=0\)
Tính giá trị biểu thức \(f\left(9\Pi\right)\)
\(2x.f'\left(x\right)-f\left(x\right)=x^2\sqrt{x}.cosx\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}.f'\left(x\right)-\dfrac{1}{2x\sqrt{x}}f\left(x\right)=x.cosx\)
\(\Leftrightarrow\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'=x.cosx\)
Lấy nguyên hàm 2 vế:
\(\int\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'dx=\int x.cosxdx\)
\(\Rightarrow\dfrac{f\left(x\right)}{\sqrt{x}}=x.sinx+cosx+C\)
\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx+C.\sqrt{x}\)
Thay \(x=4\pi\)
\(\Rightarrow0=4\pi.\sqrt{4\pi}.sin\left(4\pi\right)+\sqrt{4\pi}.cos\left(4\pi\right)+C.\sqrt{4\pi}\)
\(\Rightarrow C=-1\)
\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx-\sqrt{x}\)
Cho \(x,y,z\in R\)Thỏa mãn
\(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)=3xyz\\\left(x^3+1\right)\left(y^3+1\right)\left(z^3+1\right)=\dfrac{81}{64}x^3y^3z^3\end{matrix}\right.\)
CMR \(xyz=0\)
\(\left(x^3+1\right)\left(y^3+1\right)\left(z^3+1\right)=\dfrac{81}{64}x^3y^3z^3\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^2y^2z^2\)
\(\Leftrightarrow3xyz\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^3y^3z^3\)
\(\Rightarrow\left[{}\begin{matrix}xyz=0\\\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\end{matrix}\right.\)
Nếu \(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\)
Ta có:
\(x^2-x+1=\dfrac{3}{4}x^2+\left(\dfrac{x}{2}-1\right)^2\ge\dfrac{3}{4}x^2\)
Tương tự: \(y^2-y+1\ge\dfrac{3}{4}y^2\) ; \(z^2-z+1\ge\dfrac{3}{4}z^2\)
Do các vế của các BĐT trên đều không âm, nhân vế với vế ta được:
\(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)\ge\dfrac{27}{64}x^2y^2z^2\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)
Thế vào điều kiện \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=3xyz\) ko thỏa mãn (loại)
Vậy \(xyz=0\)