Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Minh Quang
Xem chi tiết
UYÊN
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 19:51

Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AFHE là tứ giác nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

=>IA=IH=IE=IF

Xét tứ giác BFEC có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

=>BFEC là tứ giác nội tiếp đường tròn đường kính BC

=>M là trung điểm của BC

=>MB=MC=ME=MF

Gọi O là giao điểm của AH với BC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại O

ΔBHO vuông tại O

=>\(\widehat{OHB}+\widehat{OBH}=90^0\)

mà \(\widehat{OBH}+\widehat{OCE}=90^0\)(ΔBEC vuông tại E)

nên \(\widehat{OHB}=\widehat{OCE}\)

mà \(\widehat{OHB}=\widehat{IHE}\)(hai góc đối đỉnh)

nên \(\widehat{IHE}=\widehat{OCE}\)

IH=IE

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{OCE}\)

nên \(\widehat{IEH}=\widehat{OCE}=\widehat{ECB}\)

ME=MB

=>ΔMEB cân tại M

=>\(\widehat{MEB}=\widehat{MBE}\)

=>\(\widehat{MEB}=\widehat{EBC}\)

\(\widehat{IEM}=\widehat{IEH}+\widehat{MEH}\)

\(=\widehat{EBC}+\widehat{ECB}\)

\(=90^0\)

=>ME là tiếp tuyến của (I)

Hồng Nguyễn
Xem chi tiết
hnamyuh
16 tháng 2 2023 lúc 16:37

Adu vip
Xem chi tiết
Adu vip
Xem chi tiết
Trân Vũ Mai Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 5 2019 lúc 17:31

1) Ta có

  B I C ^ = 180 0 − I B C ^ − I C B ^ = 180 0 − A B C ^ 2 − A C B ^ 2 = 180 0 − 180 ∘ − B A C ^ 2 = 90 0 + B A C ^ 2 ⇔ B A C ^ = 2 B I C ^ − 180 °

Tương tự B Q C ^ = 90 0 + B P C ^ 2 ⇔ B P C ^ = 2 B Q C ^ − 180 ° .

Tứ giác BPAC nội tiếp, suy ra B A C ^ = B P C ^ ⇒ B Q C ^ = B I C ^ , nên 4 điểm B, I, Q, C thuộc một đường tròn.

2) Gọi đường tròn (B; BI) giao (C; CI) tại K khác I thì K cố định.

Góc I B M ^  là góc ở tâm chắn cung I M ⏜  và I K M ^  là góc nội tiếp chắn cung  I M ⏜ , suy ra I K M ^ = 1 2 I B M ^  (1).

Tương tự I K N ^ = 1 2 I C N ^  (2).

Theo câu 1) B, I, Q, C thuộc một đường tròn, suy ra  I B M ^ = I B Q ^ = I C Q ^ = I C N ^  (3).

Từ (1), (2) và (3), suy ra I K M ^ = I K N ^ ⇒ K M ≡ K N .

Vậy MN đi qua K cố định.

Võ Thị Mạnh
Xem chi tiết
Hoa Không Màu
Xem chi tiết
28 Nhật Quý
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 22:21

Bổ sung: ΔABC cân tại A

ΔABC cân tại A

=>AO đi qua trug diểm I của EF

Vẽ IK vuông góc AB tại K, gọi H và G lần lượt là giao của OA với BC và(O)

Vì OE vuông góc AB, IK vuông goc AB, GB vuông góc AB

=>OE//IK//GB

ΔABG có IK//GB

nên IK/BG=AI/AG

=>IK=AI*BG/AG

ΔABH có EI//BH

ΔABE có OE//BG

=>IH/AH=BE/BA=OG/AG và AE/AB=AI/AH

=>IH=AH*OE/AE

ΔABG có OE//BG

nên AB/AE=BG/OE

AH/AI=AB/AE=BG/OE

=>AH*OE=AI*BG 

=>AH*OG=AI*BG

=>IK=IH

=>ĐPCM