cho tam giác ABC nội tiếp đường tròn tâm O. gọi P,Q,R lần lượt là trung điểm của các cung nhỏ BC,CA,AB
a) CMR: AP vuông góc với QR
b) AB cắt DE tại I. CMR: Tam giác CBI cân tại B
cho tam giác ABC nội tiếp trong đường tròn tâm O , BE và CF là hai đường cao , cắt nhau tại H , tứ giác AFHE nội tiếp trong đường tròn tâm I , BECF nội tiếp đường trfonf tâm M , chứng minh ME là tiếp tuyến của đương tròn tâm I
cho tam giác abc nội tiếp đường tròn tâm o. tia phân giác của góc abc cắt đường tròn tâm o tại d. tiếp tuyến tại d của đường tròn tâm o cắt 2 đường thẳng ab và ac lần lượt tại e và f. a, chứng minh ef song song với cb. b, chứng minh ab.af=ac.ae=ad^2
2/ Cho tam giác ABC nhọn nội tiếp (O). Qua B kẻ đường thẳng song song với tiếp tuyến tại A của đường tròn, đường thẳng này cắt AC ở M. a/ Chứng minh: AB2 = AC.AM b/ Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác BCM
Cho đường tròn O, đường kính AB. Lấy C thuộc (O) (C khác A và B). Tiếp tuyến tại A của đường tròn O cắt BC tại M.
a, CM: tam giác ABC vuông và BA2=BC.BM b, Gọi K là trung điểm của MA. CM:KC là tiếp tuyến của đường tròn O
Cho tam giác ABC nhọn đường tròn tâm o đường kính BC các cá cạnh AB AC theo thứ tự tại E và D, BD và CEcắt nhau tại H a) chứng minh AH vuông góc với BC b) chứng minh bốn điểm A,E,D,H cùng thuộc một đường tròn C) gọi I là tâm của đường tròn đi qua bốn điểm A,D,E,H. Chứng minh rằng ID vuông góc với OD
Cho hình thoi ABCD có góc B bằng 60o qua D vẽ 1 đường thẳng nằm ngoài hình thoi cắt đường thẳng AD và BC tại E và F. Gọi K là giao điểm của AFvà CE. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác KDF
cho tam cân ABC ( cân tại A). GỌi O là trung điểm của BC. Vẽ đường tròn tâm O, bán kính OB, đường tròn này cắt AB,AC lần lượt ở M,N. CMR:
a) BM=CM
b) Tam giác OBM= tam giác OCN
c) Góc NBA=1/2 góc MON
d) AO,CM, BN đồng quy