Tìm tổng giá trị m để hàm có min trên [-2;0]=3
Tính tổng các giá trị của m trên đoạn \(\left[\dfrac{-\pi}{3};\dfrac{\pi}{2}\right]\)để hàm số \(y=cos2x+cosx+\left|2m-1\right|\) có Min = 2
Tính tổng các giá trị của m trên đoạn \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) có nghĩa là \(x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) pk?
\(\Rightarrow cosx\in\left[0;1\right]\)
\(y=2cos^2x+cosx-1+\left|2m-1\right|\)
Đặt \(t=cosx;t\in\left[0;1\right]\)
\(y=2t^2+t-1+\left|2m-1\right|\)
Xét BBT của \(f\left(t\right)=2t^2+t-1;t\in\left[0;1\right]\)
\(\Rightarrow f\left(t\right)_{min}=-1\Leftrightarrow t=0\Leftrightarrow cosx=0\)\(\Leftrightarrow x=\dfrac{\pi}{2}\)
\(\Rightarrow y\ge-1+\left|2m-1\right|\)
Để \(y_{min}=2\Leftrightarrow-1+\left|2m-1\right|=2\)\(\Leftrightarrow m=2;m=-1\)
\(\Rightarrow\)Tổng m bằng \(1\)
Cho hàm số sau: y = f(x) = ( x2 - 2( m + 4) x + 2m + 12).ex. Tìm tổng các giá trị nguyên của m để hàm số nghịch biến trên TXĐ là S thì giá trị của S sẽ là:
A. 15
B. -12
C. -15
D. -10
Chọn C.
+) TXĐ: D = R
+) Ta có đạo hàm y’ = ( x2 - 2( m + 3) x + 4) .ex .
Hàm số nghịch biến trên TXĐ khi y’ = ( x2 - 2( m + 3) x + 4) .ex ≤ 0 mọi x
Cho hàm số y = f(x) = 2 x + m x - 1 . Tính tổng các giá trị của tham số m để m a x [ 2 ; 3 ] f ( x ) - m i n [ 2 ; 3 ] f ( x ) = 2.
A. -4
B. -2
C. -1
D. -3
Chọn A
Hàm số y = f(x) = 2 x + m x - 1 . xác định và liên tục trên [2;3].
Với m = -2, hàm số trở thành y = 2(không thỏa)
Với ta có:
Khi đó hàm số luôn đồng biến hoặc nghịch biến trên [2;3]
Suy ra
Do đó:
Theo giả thiết
Vậy tổng các giá trị của tham số thỏa mãn yêu cầu bài toán là: -4.
Nhận xét: đề bài cho thêm dấu giá trị tuyệt đối ở trong biểu thức là không cần thiết.
Cho hàm số y = f(x) = 2 x + m x - 1 . Tính tổng các giá trị của tham số m để m a x [ 2 ; 3 ] f ( x ) - m i n [ 2 ; 3 ] f ( x ) = 2
A. -4
B. -2
C. -1
D. -3
Chọn A
Hàm số y = f(x) =
2
x
+
m
x
-
1
xác định và liên tục trên [2;3]
Với m = -2, hàm số trở thành y = 2 (không thỏa).
Với m ≠ 2, ta có:
Khi đó hàm số luôn đồng biến hoặc nghịch biến trên [2;3]
Suy ra
Do đó:
Theo giả thiết
Vậy tổng các giá trị của tham số thỏa mãn yêu cầu bài toán là: -4.
Nhận xét: đề bài cho thêm dấu giá trị tuyệt đối ở trong biểu thức là không cần thiết.
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Tìm tất cả các giá trị của m để hàm số f x = m x + 1 x − m có giá trị lớn nhất trên 1 ; 2 bằng –2.
A. m = -3
B. m = 2
C. m = 4
D. m = 3
Đáp án D
Có y ' = − m 2 − 1 x − m 2 < 0 , ∀ x ∈ 1 ; 2 . Do đó hàm số là hàm nghịch biến trên [1;2], từ đó max x ∈ 1 ; 2 y = y 1 = m + 1 1 − m = − 2 ⇔ m = 3.
câu 19: Tìm giá trị thực của tham số m khác 0 để hàm số y= mx^2-2mx-3m-2 có giá trị nhỏ nhất bằng -10 trên R
câu 20: Gọi S là tập hợp tất cả giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y=f(x)=4x^2-4mx+m^2-2m trên đoạn [-2;0] bằng 3 . Tính tổng T các phần tử của S
Cho hàm số \(f\left(x\right)=\dfrac{x-m^2}{x+8}\)với m là tham số cực . Tìm giá trị lớn nhất của m để hàm số có giá trị nhỏ nhất trên đoạn \(\left[0;3\right]=2\)
f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].
Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.
Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.
Cách sử dụng các hàm để tính toán, hàm tính tổng, hàm tính trung bình cộng, hàm tìm giá trị lớn nhất, hàm tìm giá trị nhỏ nhất (SUM, AVERAGE, MAX, MIN)? ( trả lời giúp mình nhé !)
Hàm tính tổng:
=Sum(a,b,c,...)
Hàm tính trung bình cộng:
=average(a,b,c,...)