Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc hân
Xem chi tiết
Chanh Xanh
5 tháng 12 2021 lúc 17:33

Tham khảo

 
nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 10:28

Theo đề, ta có

m-1=-3 và (m-1)+n=-1

=>m=-2 và m+n=0

=>m=-2 và n=2

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 20:48

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)

3 điểm M;A;B thẳng hàng khi:

\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)

\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)

Phúc Hồ
Xem chi tiết
Hồng Phúc
22 tháng 2 2021 lúc 13:21

Đường thẳng đi qua hai điểm A và B nhận \(\overrightarrow{AB}=\left(-2;-4\right)\) làm vecto chỉ phương.

Phương trình đường thẳng AB là \(\dfrac{x-1}{-2}=\dfrac{y-3}{-4}\Leftrightarrow2x-y+1=0\)

\(P=MA+MB\) đạt giá trị nhỏ nhất khi M, A, B thẳng hàng

\(\Leftrightarrow M\) là giao điểm của đường thẳng AB và d

\(\Leftrightarrow M\) có tọa độ nghiệm của hệ \(\left\{{}\begin{matrix}x-2y+3=0\\2x-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow M\left(\dfrac{1}{3};\dfrac{5}{3}\right)\)

Phương Lê
Xem chi tiết
Thư Hoàngg
Xem chi tiết
Thư Hoàngg
Xem chi tiết
Thien Nguyen
Xem chi tiết
Akai Haruma
6 tháng 5 2021 lúc 12:28

Lời giải:

Do $I\in (x-2y-1=0)$ nên gọi tọa độ của $I$ là $(2a+1,a)$

Đường tròn đi qua 2 điểm $A,B$ nên: $IA^2=IB^2=R^2$

$\Leftrightarrow (2a+1+2)^2+(a-1)^2=(2a+1-2)^2+(a-3)^2=R^2$

$\Rightarrow a=0$ và $R^2=10$

Vậy PTĐTr là: $(x-1)^2+y^2=10$

Hồng Phúc
6 tháng 5 2021 lúc 12:35

Giả sử \(I=\left(2m+1;m\right)\)

Ta có: \(IA=IB\)

\(\Leftrightarrow\sqrt{\left(-2-2m-1\right)^2+\left(1-m\right)^2}=\sqrt{\left(2-2m-1\right)^2+\left(3-m\right)^2}\)

\(\Leftrightarrow4m^2+9+12m+m^2-2m+1=4m^2-4m+1+m^2-6m+9\)

\(\Leftrightarrow5m^2+10m+10=5m^2-10m+10\)

\(\Leftrightarrow m=0\)

\(\Rightarrow I=\left(1;0\right)\)

Bán kính \(R=\sqrt{\left(2-1\right)^2+3^2}=\sqrt{10}\)

Phương trình đường tròn: \(\left(x-1\right)^2+y^2=10\)

wfgwsf
Xem chi tiết
ILoveMath
4 tháng 12 2021 lúc 20:41

A

Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 20:42

Chọn A

Nguyễn Thị Hậu
Xem chi tiết
dragonball
11 tháng 11 2016 lúc 15:07

câu này mà ở lớp 1 cả lớp 5 còn ko giải được.

mà hình như nó còn chẳng phải toán