Cho ab+bc+ca=abc ; a,b,c >0 Tìm min \(A=\frac{a^2}{a+bc}+\frac{b^2}{b+ac}+\frac{c^2}{c+ab}\)
Cho tam giác ABC. Tính tổng A B → , B C → + B C → , C A → + C A → , A B → .
A. 180 °
B. 360 °
C. 270 °
D. 120 °
Ta có A B → , B C → = 180 0 − A B C ^ B C → , C A → = 180 0 − B C A ^ C A → , A B → = 180 0 − C A B ^
⇒ A B → , B C → + B C → , C A → + C A → , A B → = 540 0 − A B C ^ + B C A ^ + C A B ^ = 540 0 − 180 0 = 360 0 .
Chọn B.
11. Cho tam giác ABC vuông tại A và có AB = C , AC =b . Tính vectơ BA. Vectơ BC
12. Cho tg ABC có AB =2cm , BC = 3cm , CA= 5cm. Tính vectơ CA. Vectơ CB
13. Cho tg ABC có BC =a , CA = b , AB =c. Tính P = ( vectơ AB + vectơ AC). Vectơ BC
14. Cho tg ABC có BC =a , CA = b , AB =c. Gọi M là trung điểm cạnh BC. Tính vectơ AM. Vectơ BC
Câu 12: Cho tam giác ABC có góc A bằng 450 ; góc B bằng 750. Ta có:
A. AB< BC < CA B. BC < AB < AC
C. CA < AB < BC D. CA < BC< AB
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
Cho tam giác ABC có BC = a, CA = b, AB = c. CMR:
ab + bc + ca ≥ 4\(\sqrt{3}\).S
Ta cần chứng minh:
\(\left(ab+bc+ca\right)^2\ge48\left(\dfrac{a+b+c}{2}\right)\left(\dfrac{a+b-c}{2}\right)\left(\dfrac{b+c-a}{2}\right)\left(\dfrac{c+a-b}{2}\right)\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Mặt khác do a;b;c là 3 cạnh của 1 tam giác:
\(\Rightarrow\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\le abc\)
Nên ta chỉ cần chứng minh:
\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\) (đúng)
Ta có: \(S=\dfrac{1}{2}ab\cdot sinC=\dfrac{1}{2}bc\cdot sinA=\dfrac{1}{2}ac\cdot sinB\)
\(\Leftrightarrow\) \(ab=\dfrac{2S}{sinC}\); \(bc=\dfrac{2S}{sinA}\); \(ac=\dfrac{2S}{sinB}\)
\(\Rightarrow\) \(ab+bc+ca=2S\left(\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}\right)\)
Vì \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) \(\Rightarrow\) \(\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}\ge2\sqrt{3}\)
\(\Leftrightarrow\) \(2S\left(\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}\right)\ge4\sqrt{3}S\)
Hay \(ab+bc+ca\ge4\sqrt{3}S\) (đpcm)
Dấu "=" xảy ra khi \(sinA=sinB=sinC=\dfrac{\sqrt{3}}{2}\) hay \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
hay tam giác ABC đều
Chúc bn học tốt!
Cho tam giác ABC, ba điểm M, N, P lần lượt thuộc BC, CA, AB sao cho BM/BC = CN/CA = AP/AB và BM/BC < 1/2. Chứng minh tam giác ABC và MNP có cùng trọng tâm
Cho tam giác ABC có BC=a, AC=b, AB=c thoả mãn: ab/b+c+bc/c+a+ca/a+b=ca/b+c+ab/c+a+bc/a+b. Chứng minh tg ABC là tam giác cân
Cho tam giác ABC,biết AB-BC=22,BC-CA=22,CA-AB=22.Tính chiều dài mỗi cạnh?
Cho tui tick nha
Diện tích tam giác ABN = 1/4 diện tích tam giác ABC vì có chung chiều cao nối từ A xuống N và BN = 1/4 BC
Diện tích tam giác ABN là:
64 x 1/4 = 16 (cm2 )
Diện tích tam giác BMN = 1/2 diện tích tam giác ABN vì có chung chiều cao nối từ N xuống M và BM = 1/2 BA
Diện tích tam giác BMN là:
16 x 1/2 = 8 (cm2 )
Đáp số: 8 cm2
cô làm rồi em nhé!
https://olm.vn/cau-hoi/cho-tam-giac-abc-co-dien-tich-180-cm2-tren-cac-canh-ab-bc-ca-lan-luot-lay-cac-diem-m-n-p-sao-cho-am-23-ab-bn-34-bc-va-cp-13-ca-tinh-di.8088189515587
cho O là 1 điểm nằm trong tam giác ABC.
CMR:(AB+BC+CA)/2<CA+OB+OC<AB+BC+CA