\(A=\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\)cho ab+bc+ca=abc và a,b,c>0 Tìm min
cho a;b;c>0 thỏa mãn abc+ab+bc+ca=2.tìm min của
\(P=\frac{1}{ab+a+b}+\frac{1}{bc+b+c}+\frac{1}{ca+c+a}\)
cho a,b,c >0 và ab+bc+ac=abc
Tìm min của biểu thức: \(P=\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{a^2+2c^2}}{ac}+\frac{\sqrt{c^2+2b^2}}{bc}\)
Cho a,b,c>=0 tm ab+bc+ca=1.Tìm Min B=\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
cho a. b, c >0. Tìm Min:
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)
Giups mình vói tối nay mk hk r
Cho \(a,b,c>0;a+b+c\le1\). tìm min của \(S=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Cho \(\hept{\begin{cases}ab+bc+ca\le abc\\a,b,c>0\end{cases}}\)
Tìm Min \(A=\frac{a^2}{b+2a}+\frac{b^2}{c+2b}+\frac{c^2}{a+2c}\)
Cho a, b, c > 0 thỏa mãn a+b+c=1
Tính \(P=\left(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\right):\frac{ab+bc+ca+3abc}{ab+bc-abc}.\)
Cho a,b,c>0 thỏa mãn : ab\(\ge12\),\(bc\ge8\)
Tìm Min của S= a+b+c+\(2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)+\frac{8}{abc}\)