Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mai  love N
Xem chi tiết
Trần Hùng Minh
1 tháng 2 2023 lúc 16:22

Áp dụng BĐT cô si với ba số không âm ta có :

1(�+1)2+�+18+�+18≥31643=34

=> 1(�+1)2≥34−�+14 (1)

Dấu '' = '' xảy ra khi x = 1 

CM tương tự ra có " 1(�+1)2≥34−�+14(2) ; 1(�+1)2≥34−�+14 (3)

Dấu ''= '' xảy ra khi y = 1 ; z = 1 

Từ (1) (2) và (3) => 1(�+1)2+1(�+1)2+1(�+1)2≥34⋅3−�+�+�+34≥94−3���3+34=94−64=34

BĐT được chứng minh 

Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1

:()

trần vũ hoàng phúc
Xem chi tiết
Kudo Shinichi
10 tháng 6 2023 lúc 7:58

Ta cần chứng minh: 

\(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(1\right)\left(a,b>0\right)\)

\(\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{a+b}{ab}\\ \Leftrightarrow4ab\le\left(a+b\right)^2\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

\(DBXR\Leftrightarrow a=b\)

Do các phép biến đổi tương đương nên (1) luôn đúng

Áp dụng (1), ta có:

\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}\left[\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Chứng minh tương tự, ta được:

\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

Cộng từng vế BĐT, ta được:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)Hay \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\left(đpcm\right)\)

\(DBXR\Leftrightarrow x=y=z=\dfrac{3}{4}\)

Nguyễn Ngọc Anh
Xem chi tiết
Tống nữ Khánh Ly
Xem chi tiết
_Halcyon_:/°ಠಿ
31 tháng 5 2021 lúc 17:10

Áp dụng bđt : \(\dfrac{1}{a}\)\(\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\)(dấu "=" xảy ra ⇔ a=b)

⇒ P= \(\dfrac{1}{x+1}\)\(\dfrac{1}{y+2}\) ≥ \(\dfrac{4}{x+1+y+2}\) = \(\dfrac{4}{3+3}\) = \(\dfrac{2}{3}\)

Vậy Pmin=\(\dfrac{3}{2}\) ; dấu '=" xảy ra ⇔ \(\left\{{}\begin{matrix}x+1=y+2\\x+y=3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

 

 

Trần Minh Hoàng
31 tháng 5 2021 lúc 17:14

Bạn cần nêu rõ ra gt đầu là \(0\le x< 1\) và \(2\leq y<3\) hay là \(0\le x< 1,2=\dfrac{6}{5}\le y< 3\)

Bình Trần
31 tháng 5 2021 lúc 17:15

undefined

Trần Hạ Vi
Xem chi tiết
Nguyễn Trọng Chiến
28 tháng 2 2021 lúc 14:13

Áp dụng bđt Cô-si vào 2 số dương có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)

Dấu = xảy ra \(\Leftrightarrow x=y=4\)

Yeutoanhoc
28 tháng 2 2021 lúc 15:13

`1/x+1/y>=2/(\sqrt{xy})`

`<=>1/2>=2/(\sqrt{xy})`

`<=>\sqrt{xy}>=4`

`=>\sqrt{x}+\sqrt{y}>=2.2=4`

Dấu "=" xảy ra khi `x=y=4`

Lil Shroud
Xem chi tiết
missing you =
7 tháng 12 2021 lúc 19:42

\(xy+yz+xz=xyz\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

\(đặt\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\)

\(\Rightarrow\dfrac{1}{x+4y+9z}=\dfrac{1}{\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}}\le\dfrac{1}{\dfrac{\left(1+2+3\right)^2}{a+b+c}}=\dfrac{1}{36}\left(đpcm\right)\)

N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 5 2021 lúc 17:14

\(VT=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{z}\left(\dfrac{4}{x+y}\right)=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(z+x+y\right)^2}\ge16\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)

Tạ Uyên
Xem chi tiết
Tạ Uyên
28 tháng 4 2022 lúc 19:41

Giúp mình câu này với ah. 

 

Nguyễn Bạch Gia Chí
Xem chi tiết
HT2k02
6 tháng 4 2021 lúc 22:23

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)

\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)

Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)