Cho x, y > 0 thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x}{\sqrt{1-x}}+\dfrac{y}{\sqrt[]{1-y}}\)
Cho các số thực dương x, y, z thỏa mãn x + y + z = 4.Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x+z}{xyz}\)
cho 3 số thực dương x,y,z thỏa mãn x+y+z=xyz
tìm giá trị lớn nhất của biểu thức p=\frac{1}{\sqrt{x^2+1}}\:+\frac{1}{\sqrt{\gamma ^2+1}}+\frac{1}{\sqrt{z^2+1}}
Cho hai số dương x, y thỏa mãn điều kiện x+y=1. Hãy tìm giá trị nhỏ nhất của biểu thức:
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
Cho biểu thức:
A = (\(\sqrt{x}\) + \(\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)) : (\(\dfrac{x}{\sqrt{xy}+y}\) + \(\dfrac{y}{\sqrt{xy}-x}\) - \(\dfrac{x+y}{\sqrt{xy}}\))
a) Rút gọn A
b) Tính giá trị của biểu thức A biết x = 3; y = 4 + 2\(\sqrt{3}\)
Cho biểu thức
P=\(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
a) Rút gọn biểu thức
b) Tìm giá trị của x khi p=4
c) tÌM GIÁ TRỊ NHỎ NHẤT CỦA P
d) Tính giá trị của P khi x=3-\(2\sqrt{2}\)
Cho biểu thức \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}+1}-\dfrac{2}{x-1}\)
a, Nêu ĐKXĐ và rút gọn biểu thức A
b. Tính giá trị của biểu thức A khi x=9
c.Khi x thỏa mãn ĐKXĐ . Hãy tìm giá trị nhỏ nhất của biểu thức B,với B=A(x-1)
X,y,z là số dương thỏa mãn đk x+y+z=a Tìm giá trị nhỏ nhất của bt Q=(1+a/x)(1+a/y)(1+a/z) helppppppp
Giả sử x và y là hai số thỏa mãn x> y và xy = 1. Tìm GTNN của biểu thức: A=\(\dfrac{x^2+y^2}{x-y}\)