Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tạ Uyên

Cho các số thực dương x, y, z thỏa mãn x + y + z = 4.Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x+z}{xyz}\)

Xyz OLM
29 tháng 1 2022 lúc 10:46

Có \(P=\dfrac{x+z}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xy}=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}\)

\(=\dfrac{4}{y\left(x+z\right)}=\dfrac{4}{y\left(4-y\right)}=\dfrac{4}{-y^2+4y}=\dfrac{4}{-\left(y-2\right)^2+4}\ge1\)

"=" xảy ra khi y = 2 ; x = 1 ; z = 1

Tạ Uyên
29 tháng 1 2022 lúc 10:37

Giúp mình câu này với ah.

 

Trần Đức Huy
29 tháng 1 2022 lúc 11:00

Ta có x+y+z=4

=>y=4-x-z

Ta có :x,y,z>0

=>\(x^2>0,z^2>0\)

=>\(x^2z>0,z^2x>0\)

Áp dụng bất đẳng thức cô si với hai số dương \(x^2z\) và z ta có

      \(x^2z+z\)>=2\(\sqrt{x^2z.z}\)

<=>\(x^2z+z>=2xz\)

CMTT:\(z^2x+x>=2xz\)

=>\(x^2z+z+z^2x+x>=4xz\)

=>\(x+z>=4xz-x^2z-z^2x\)

=>\(x+z>=xz\left(4-x-z\right)\)

Mà y=4-x-z(cmt)

=>\(x+z>=xyz\)

=>\(\dfrac{x+z}{xyz}>=1\)

hay \(P>=1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x^2z=z\\z^2x=x\\x+y+z=4\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}x^2=1\\z^2=1\\x+y+z=4\end{matrix}\right.\)  

                        <=>\(\left\{{}\begin{matrix}x=1\\z=1\\1+y+1=4\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}x=1\\z=1\\y=2\end{matrix}\right.\)

Vậy tại x=1, y=2,z=1 thì P có giá trị nhỏ nhất là 1


Các câu hỏi tương tự
tiến vũ lớp 9 đàm
Xem chi tiết
Con Bò Nguyễn
Xem chi tiết
Tạ Uyên
Xem chi tiết
dsadasd
Xem chi tiết
Hoàng Bảo Ngọc
Xem chi tiết
Nguyễn Đình Thành
Xem chi tiết
Tạ Uyên
Xem chi tiết
Lê Thị Thu Hiền
Xem chi tiết
hilo
Xem chi tiết