Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC (H thuộc BC). 1) Nếu sin ACB = 3/5 và BC = 20 cm. Tính các cạnh AB, AC, BH và góc ACB (số đo góc làm tròn đến độ)
2) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. Chứng minh: AD.AC = BH.BC.
3) Kẻ tia phân giác BE của DBA ( E thuộc đoạn DA). Chứng minh: tan EBA = AD/AB + BD
4) Lấy điểm K thuộc đoạn AC, Kẻ KM vuông góc với HC tại M, KN vuông góc với AH tại N. chứng minh : NH.NA+MH.MC=KA.KC
Cho ABCD là hình thang có đáy lớn CD. Qua A kẻ đường thẳng song song BC cắt BD tại M cắt CD tại I. Qua B kẻ đường thẳng song song AD cắt CD ở K. Qua K kẻ đường thẳng song song BD cắt BC ở Q.
a,C/m ABCI là hình bình hành
b, C/m AB=DK
c, C/m DI=CK
d, C/m MQ//DC