Đề là: \(Q=\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\) đúng không em nhỉ?
Ta có:
\(Q=\left(1+\dfrac{x+y+z}{x}\right)\left(1+\dfrac{x+y+z}{y}\right)\left(1+\dfrac{x+y+z}{z}\right)\)
\(=\dfrac{\left(x+x+y+z\right)\left(x+y+y+z\right)\left(x+y+z+z\right)}{xyz}\)
\(Q\ge\dfrac{4\sqrt[4]{x^2yz}.4\sqrt[4]{xy^2z}.4\sqrt[4]{xyz^2}}{xyz}=\dfrac{64xyz}{xyz}=64\)
\(Q_{min}=64\) khi \(x=y=z=\dfrac{a}{3}\)