Với các số dương x,y,z,t thỏa mãn x+y+z+t=4. Tìm GTNN của biểu thức A=\(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)
Cho x2+y2+z2 = 2016 và x,y,z>0
Tìm GTNN của A= \(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\)
cho 3 số thực dương x,y,z thỏa mãn x+y+z=xyz
tìm giá trị lớn nhất của biểu thức p=\frac{1}{\sqrt{x^2+1}}\:+\frac{1}{\sqrt{\gamma ^2+1}}+\frac{1}{\sqrt{z^2+1}}
1 . Giả sử a,b,c,x,y,z là số thực khác không thỏa mãn \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) và\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
chúng minh rằng \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Cho các số thực \(x\ge1\); \(y\ge1\); \(z\ge1\) thỏa mãn x+y+z=4
Tìm GTLN,GTNN của biểu thức \(P=x^2+y^2+z^2\)
cho x,y,z dương sao cho xy+yz+xz=3
CM: \(\frac{1}{x^2+2}+\frac{1}{y^2+2}+\frac{1}{z^2+2}\le1\)
Bài 1 : Cho x, y > 0 thỏa mãn 2x+y>=7. Tìm GTNN của \(P=x^2-x+3y+\dfrac{9}{x}+\dfrac{1}{y}+9\)
Bài 2 : Cho x, y, z >0 thỏa mãn x+y+z=1. Tìm GTNN của \(P=\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\)
cho x, y, z >0. chứng minh \(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{z}+\sqrt{x}}< 2\)
Bài 1: cho a, b > 0 và a + b <= 1. CMR: \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}>=3\)
Bài 2: cho x, y, z >=0 thỏa mãn x + y + z >0. CMR: \(\dfrac{x}{4x+4y+z}+\dfrac{y}{4y+4z+x}+\dfrac{z}{4z+4x+y}< =\dfrac{1}{3}\)
Bài 3: cho x, y, z > 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm GTNN của \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2}+x^2+3}\)