Ta co : (x+y)2≤2(x2+y2)
=> x+y≤\(\sqrt{2\left(x^2+y^2\right)}\)
=> \(\dfrac{z^2}{x+y}\ge\dfrac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
Tuong tu: \(\dfrac{x^2}{y+z}\ge\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
\(\dfrac{y^2}{x+z}\ge\dfrac{y^2}{\sqrt{2\left(x+z\right)}}\)
VT≥\(\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\dfrac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\dfrac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
Dat : \(\sqrt{y^2+z^2}=a\)
\(\sqrt{x^2+z^2}=b\)
\(\sqrt{x^2+y^2}=c\)
=> a+b+c=2015 , a2=y2+z2 , b2=x2+z2 , c2=x2+y2
=> VT≥ \(\dfrac{b^2+c^2-a^2}{2\sqrt{2}.a}+\dfrac{a^2+c^2-b^2}{2\sqrt{2}.b}+\dfrac{a^2+b^2-c^2}{2\sqrt{2}c}\)
≥ \(\dfrac{1}{2\sqrt{2}}\left[\dfrac{\left(b+c\right)^2}{2a}+\dfrac{\left(a+b\right)^2}{2c}+\dfrac{\left(a+c\right)^2}{2b}-2015\right]\)
≥\(\dfrac{1}{2\sqrt{2}}\left[2\left(a+b+c\right)-2015\right]\)
= \(\dfrac{2015}{2\sqrt{2}}\)