Bài 1:
Áp dụng bđt Schwarz:
\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
dấu "=" xảy ra khi \(\dfrac{x^2}{x^2+2yz}=\dfrac{y^2}{y^2+2xz}=\dfrac{z^2}{z^2+2xy}=\dfrac{1}{3}\Leftrightarrow x=y=z=1\)
vậy P đạt GTNN bằng 1 <=> x=y=z=1
Bài 2:
\(x\ge4\Rightarrow\left\{{}\begin{matrix}x^2\ge16\left(1\right)\\\dfrac{18}{\sqrt{x}}\ge9\left(2\right)\end{matrix}\right.\)
cộng theo vế (1) và (2), ta được: \(x^2+\dfrac{18}{\sqrt{x}}\ge25\) hay \(S\ge25\left(đpcm\right)\)