Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tống nữ Khánh Ly

cho các số thực x,y thỏa mãn :\(\left\{{}\begin{matrix}0\le x< 1,2\le y< 3\\x+y=3\end{matrix}\right.\) Tính GTNN của biểu thức P=\(\dfrac{1}{x+1}+\dfrac{1}{y+2}\)

_Halcyon_:/°ಠಿ
31 tháng 5 2021 lúc 17:10

Áp dụng bđt : \(\dfrac{1}{a}\)\(\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\)(dấu "=" xảy ra ⇔ a=b)

⇒ P= \(\dfrac{1}{x+1}\)\(\dfrac{1}{y+2}\) ≥ \(\dfrac{4}{x+1+y+2}\) = \(\dfrac{4}{3+3}\) = \(\dfrac{2}{3}\)

Vậy Pmin=\(\dfrac{3}{2}\) ; dấu '=" xảy ra ⇔ \(\left\{{}\begin{matrix}x+1=y+2\\x+y=3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

 

 

Trần Minh Hoàng
31 tháng 5 2021 lúc 17:14

Bạn cần nêu rõ ra gt đầu là \(0\le x< 1\) và \(2\leq y<3\) hay là \(0\le x< 1,2=\dfrac{6}{5}\le y< 3\)

Bình Trần
31 tháng 5 2021 lúc 17:15

undefined


Các câu hỏi tương tự
đấng ys
Xem chi tiết
ILoveMath
Xem chi tiết
dinh huong
Xem chi tiết
DUTREND123456789
Xem chi tiết
ILoveMath
Xem chi tiết
hằng
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Kim Tuyền
Xem chi tiết
DUTREND123456789
Xem chi tiết