Áp dụng bđt : \(\dfrac{1}{a}\)+ \(\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\)(dấu "=" xảy ra ⇔ a=b)
⇒ P= \(\dfrac{1}{x+1}\)+ \(\dfrac{1}{y+2}\) ≥ \(\dfrac{4}{x+1+y+2}\) = \(\dfrac{4}{3+3}\) = \(\dfrac{2}{3}\)
Vậy Pmin=\(\dfrac{3}{2}\) ; dấu '=" xảy ra ⇔ \(\left\{{}\begin{matrix}x+1=y+2\\x+y=3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Bạn cần nêu rõ ra gt đầu là \(0\le x< 1\) và \(2\leq y<3\) hay là \(0\le x< 1,2=\dfrac{6}{5}\le y< 3\)