Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yến Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 22:09

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

mai phương thúy
Xem chi tiết
meme
5 tháng 9 2023 lúc 11:48

a] Để chứng minh AF // BD, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác ACF và BDE. Ta có:

AC/BD = AD/BE (vì AF // BD) AC/AD = BE/BD (vì AM // BD và BN // BD)

Từ hai tỉ số trên, ta có:

AC/AD = BE/BD

Vậy, ta đã chứng minh được AF // BD.

b] Để chứng minh E là trung điểm CF, ta cần chứng minh CE = EF và CF // AB. Ta có:

CE = AM (vì CE // AM và AC // BD) EF = BN (vì EF // BN và AC // BD)

Vậy, ta đã chứng minh được E là trung điểm CF.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 12 2017 lúc 3:07

HS chứng minh IMNK là hình chữ nhật Þ IN = KM

lutufine 159732486
Xem chi tiết
Lê Hân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2019 lúc 6:42

Vì E thuộc cạnh AB nên EB < AB hay 2x < y

Ta có: AE = AB – EB = y – 2x (cm)

AG = AD + DG = y + (3/2) EB = y + (3/2) .2x = y + 3x (cm)

Diện tích hình chữ nhật bằng diện tích hình vuông nên ta có phương trình:

(y – 2x)(y + 3x) = y 2

Theo định lí Pitago, ta có: F C 2 = E B 2 + D G 2

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chu vi ngũ giác ABCFG:

PABCFG = AB + BC + CF + FG + GA

= AB + BC + CF + FG + GD + DA

= y + y + x 13  + y – 2x + 3x + y = x(1 +  13 ) + 4y

Vì chu vi ngũ giác ABCFG bằng 100 + 4 13  (cm) nên ta có phương trình:

x(1 +  13  ) + 4y = 100 + 4 13

 

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giá trị của x và y thỏa điều kiện bài toán.

Vậy x = 4 (cm), y = 24 (cm).

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2023 lúc 10:26

loading...  loading...  loading...  

Đỗ Thị Thảo
Xem chi tiết
Nguyễn Trần Phương Anh
Xem chi tiết
meme
2 tháng 9 2023 lúc 17:07

a) Để chứng minh BD = 2AO, ta có thể sử dụng định lý Thales và các quy tắc về tỉ lệ đồng dạng. Tuy nhiên, để trình bày cách chứng minh chi tiết, tôi cần thêm thông tin về các định lý và quy tắc được sử dụng trong bài toán này.

b) Để chứng minh I là trung điểm của KH, ta có thể sử dụng các quy tắc về đường thẳng song song và đồng quy. Tuy nhiên, để trình bày cách chứng minh chi tiết, tôi cần thêm thông tin về các định lý và quy tắc được sử dụng trong bài toán này.

c) Để chứng minh tứ giác AIEO là hình bình hành, ta có thể sử dụng các quy tắc về đường chéo và cạnh đối. Tuy nhiên, để trình bày cách chứng minh chi tiết, tôi cần thêm thông tin về các định lý và quy tắc được sử dụng trong bài toán này.

d) Để chứng minh I, K, E thẳng hàng, ta có thể sử dụng các quy tắc về đường thẳng và góc vuông. Tuy nhiên, để trình bày cách chứng minh chi tiết, tôi cần thêm thông tin về các định lý và quy tắc được sử dụng trong bài toán này.