Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đồng Nguyễn Anh Thư
Xem chi tiết
Akai Haruma
12 tháng 3 2021 lúc 13:53

Lời giải:

a) 

Theo định lý Pitago ta có:

$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm)

b) 

Từ kết quả phần a ta suy ra:

$BC>AC> AB$

$\Rightarrow \widehat{A}> \widehat{B}> \widehat{C}$ 

Akai Haruma
12 tháng 3 2021 lúc 14:05

Hình vẽ:

undefined

tamanh nguyen
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

thien pham
Xem chi tiết
Anh Nguyễn
7 tháng 3 2022 lúc 8:41

a) Theo định lí Py-ta-go, ta có:
BC^2 = AB^2 + AC^2
=>BC^2 = 6^2+8^2
=>BC^2 = 100
=>BC = căn 100= 10cm
b) 2 tam giác vuông AHB và AHD có 
AH chung
HB = HD giả thiết
=> 2 tam giác trên bằng nhau. ( 2 cạnh góc vuông )
=> AB = AD
c) Xét 2 tam giác vuông HAB và HED có:
HA = HE. giả thiết
HB = HD. giả thiết
=> 2 tam giác trên bằng nhau theo th 2 cạnh góc vuông
=> góc D = góc B
Dễ thấy góc D và góc B ở vị trí so le trong nên AB // ED
Vì BA vuông góc với AC mà AB // ED nên suy ra ED vuông góc với  C

ILoveMath đã xóa
Nguyễn Ngọc Huy Toàn
7 tháng 3 2022 lúc 8:41

Áp dụng định lý pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

Duy Nam
7 tháng 3 2022 lúc 8:41

áp dụng định lí pytago

ta có AB^2 +AC^2=BC^2

6^2+8^2=BC^2

BC^2=36+64

BC^2=100

BC=10cm

Anne
Xem chi tiết
Kiều Vũ Linh
14 tháng 9 2023 lúc 7:01

loading... Do ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10 (cm)

Do CD là phân giác (gt)

⇒ AD/AC = BD/BC

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

AD/AC = BD/BC = (AD + BD)/(AC + BC) = AB/(AC + BC) = 6/18 = 1/3

AD/AC = 1/3 ⇒ AD = AC.1/3 = 8/3 (cm)

∆ACD vuông tại A

⇒ CD² = AC² + AD² (Pytago)

= 8² + (8/3)²

= 640/9

⇒ CD = 8√10/3 (cm)

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 17:32

loading...  

Lương Nguyễn Anh Đức
Xem chi tiết
Thành Vũ Trung
3 tháng 3 2016 lúc 18:00

\(\sqrt{6^2+8^2}=10\left(cm\right)\)

Ann Hannie
Xem chi tiết
Kiều Vũ Linh
14 tháng 9 2023 lúc 7:07

loading... ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10 (cm)

Do CD là phân giác của ∆ABC (gt)

⇒ AD/AC = BD/BC

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

AD/AC = BD/BC = (AD + BD)/(AC + BC) = AB/(AC + BC) = 6/18 = 1/3

AD/AC = 1/3 ⇒ AD = AC . 1/3 = 8/3 (cm)

∆ACD vuông tại A

⇒ CD² = AD² + AC² (Pytago)

= (8/3)² + 8²

= 640/9

⇒ CD = 8√10/3 (cm)

Nguyễn Lê Phước Thịnh
14 tháng 9 2023 lúc 0:03

loading...

Gia Huy
Xem chi tiết
ILoveMath
27 tháng 10 2021 lúc 16:46

góc nào 30 độ

Đỗ Thị Thu Huyền
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Kiều Vũ Linh
25 tháng 4 2023 lúc 8:05

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:

∠B chung

⇒ ∆ABC ∽ ∆HBA (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10

Do ∆ABC ∽ ∆HBA (cmt)

⇒ AC/AH = BC/AB

⇒ AH = AB.AC/BC

= 6.8/10

= 4,8 (cm)

∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ BH² = AB² - AH²

= 6² - (4,8)²

= 12,96

⇒ BH = 3,6 (cm)

Chiến Hoàng
25 tháng 4 2023 lúc 8:02

 

a) Ta có:

 

- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.

 

- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.

 

- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).

 

b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:

 

- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.

 

- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.

 

- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.

 

Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.