Cho tam giác ABC vuông tại A có độ dài AB = 6cm; BC = 10cm, đường cao AH. Độ dài HC là:
Lời giải:
a)
Theo định lý Pitago ta có:
$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm)
b)
Từ kết quả phần a ta suy ra:
$BC>AC> AB$
$\Rightarrow \widehat{A}> \widehat{B}> \widehat{C}$
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm
1 tính độ dài cạnh BC
a) Theo định lí Py-ta-go, ta có:
BC^2 = AB^2 + AC^2
=>BC^2 = 6^2+8^2
=>BC^2 = 100
=>BC = căn 100= 10cm
b) 2 tam giác vuông AHB và AHD có
AH chung
HB = HD giả thiết
=> 2 tam giác trên bằng nhau. ( 2 cạnh góc vuông )
=> AB = AD
c) Xét 2 tam giác vuông HAB và HED có:
HA = HE. giả thiết
HB = HD. giả thiết
=> 2 tam giác trên bằng nhau theo th 2 cạnh góc vuông
=> góc D = góc B
Dễ thấy góc D và góc B ở vị trí so le trong nên AB // ED
Vì BA vuông góc với AC mà AB // ED nên suy ra ED vuông góc với C
Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
áp dụng định lí pytago
ta có AB^2 +AC^2=BC^2
6^2+8^2=BC^2
BC^2=36+64
BC^2=100
BC=10cm
Cho tam giác ABC vuông tại A có AB=6cm; AC= 8cm. Tính độ dài đường phân giác trong CD
Do ∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10 (cm)
Do CD là phân giác (gt)
⇒ AD/AC = BD/BC
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
AD/AC = BD/BC = (AD + BD)/(AC + BC) = AB/(AC + BC) = 6/18 = 1/3
AD/AC = 1/3 ⇒ AD = AC.1/3 = 8/3 (cm)
∆ACD vuông tại A
⇒ CD² = AC² + AD² (Pytago)
= 8² + (8/3)²
= 640/9
⇒ CD = 8√10/3 (cm)
Cho tam giác vuông ABC vuông góc tại A. Có cạnh AB dài 6cm, cạnh AC dài 8cm. Tính độ dài cạnh BC.
Cho tam giác ABC vuông tại A, có AB=6cm và AC= 8cm. Tính độ dài đường phân giác trong CD
∆ABC vuông tại A (gt)
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10 (cm)
Do CD là phân giác của ∆ABC (gt)
⇒ AD/AC = BD/BC
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
AD/AC = BD/BC = (AD + BD)/(AC + BC) = AB/(AC + BC) = 6/18 = 1/3
AD/AC = 1/3 ⇒ AD = AC . 1/3 = 8/3 (cm)
∆ACD vuông tại A
⇒ CD² = AD² + AC² (Pytago)
= (8/3)² + 8²
= 640/9
⇒ CD = 8√10/3 (cm)
Cho tam giác ABC vuông tại A,có AB = 6cm,= 30°.Độ dài cạnh AB là gì chỉ em với ạ
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH. a) Chứng minh tam giác ABC đồng dạng với tam giác HBA b) Tính độ dài các cạnh BC, AH ,BH
a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:
∠B chung
⇒ ∆ABC ∽ ∆HBA (g-g)
b) ∆ABC vuông tại A (gt)
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10
Do ∆ABC ∽ ∆HBA (cmt)
⇒ AC/AH = BC/AB
⇒ AH = AB.AC/BC
= 6.8/10
= 4,8 (cm)
∆ABH vuông tại H
⇒ AB² = AH² + BH² (Pytago)
⇒ BH² = AB² - AH²
= 6² - (4,8)²
= 12,96
⇒ BH = 3,6 (cm)
a) Ta có:
- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.
- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.
- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).
b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:
- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.
- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.
- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.
Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.