Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Minh Nhã
Xem chi tiết
Phước Lộc
22 tháng 5 2022 lúc 19:59

phương trình hoành độ giao điểm của (d) và (p):

2x + 2m = x2 

=> x2 - 2x - 2m = 0

phương trình có 2 nghiệm x, x2 phân biệt nên

\(\Delta=4+8m>0\Leftrightarrow m>-\dfrac{1}{2}\)

theo vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=-2m\end{matrix}\right.\)

A(x1;x12) => y1=x12

B(x2;x22) => y2=x22

ta có (1 + y1)(1 + y2) = 5

hay y1 + y2 + y1.y2 = 4

hay x12 + x22 + x12.x22 = 4

(x1 + x2)2 - 2x1.x2 + (x1.x2)2 = 4

4 + 4m + 4m2 = 4

4m(1 + m) = 0

=> m = 0 (chọn) hoặc m = -1 (loại vì trái với điều kiện)

vậy...

Võ Quang Nhân
22 tháng 5 2022 lúc 19:39

Phương trình hoành độ giao điểm: x2−2x−2m=0

Δ′=1+2m≥0⇒m≥−12

Theo hệ thức Viet: {x1+x2=2x1x2=−2m

(1+y1)(1+y2)=5

⇔(1+x12)(1+x22)=5

⇔(x1x2)2+x12+x22=4

⇔(x1x2)2+(x1+x2)2−2x1x2−4=0

⇔4m2+4m=0

Phước Lộc
22 tháng 5 2022 lúc 20:01

bạn bổ sung vào giúp mình:

=> x2 - 2x - 2m = 0

phương trình có 2 nghiệm x, x2 phân biệt nên

\(\Delta=4+8m>0\Leftrightarrow m>-\dfrac{1}{2}\)

manh nguyen
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2022 lúc 23:55

Phương trình hoành độ giao điểm: \(x^2-2x-2m=0\)

\(\Delta'=1+2m\ge0\Rightarrow m\ge-\dfrac{1}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-2m\end{matrix}\right.\)

\(\left(1+y_1\right)\left(1+y_2\right)=5\)

\(\Leftrightarrow\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)

\(\Leftrightarrow\left(x_1x_2\right)^2+x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2-4=0\)

\(\Leftrightarrow4m^2+4m=0\)

\(\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\left(ktm\right)\end{matrix}\right.\)

Võ Trường Sơn
Xem chi tiết
Tô Mì
24 tháng 4 2023 lúc 21:59

\(y_1+y_2-x_1x_2\) bằng cái gì vậy bạn ?

Tô Mì
25 tháng 4 2023 lúc 22:08

Phương trình hoành độ giao điểm của \(\left(d\right),\left(P\right)\) là : \(x^2=\left(2m+1\right)x-2m\)

hay : \(x^2-\left(2m+1\right)x+2m=0\left(I\right)\).

Do, \(\left(d\right)\cap\left(P\right)\) tại hai điểm phân biệt nên phương trình \(\left(I\right)\) có hai nghiệm phân biệt khi \(\Delta=b^2-4ac>0\)

Hay : \(\left[-\left(2m+1\right)\right]^2-4.1.2m>0\)

\(\Leftrightarrow4m^2+4m+1-8m>0\)

\(\Leftrightarrow\left(2m-1\right)^2>0\Rightarrow m\ne\dfrac{1}{2}\).

Theo định lí Vi-ét : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(2m+1\right)}{1}=2m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{2m}{1}=2m\end{matrix}\right.\)

Theo đề bài : \(y_1+y_2-x_1x_2=1\left(II\right)\)

Do các điểm trên thuộc \(\left(P\right)\) nên \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\).

Khi đó, ta viết lại phương trình \(\left(II\right)\) thành : \(x_1^2+x_2^2-x_1x_2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=1\)

\(\Rightarrow\left(2m+1\right)^2-3.2m=1\)

\(\Leftrightarrow4m^2+4m+1-6m=1\)

\(\Leftrightarrow4m^2-2m=0\)

\(\Leftrightarrow2m\left(2m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}2m=0\\2m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\left(nhận\right)\\m=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Vậy : \(m=0\).

mai anh
Xem chi tiết
Cố Tử Thần
20 tháng 4 2019 lúc 20:52

1a, hoành độ giao điểm của P và d là no pt:

1/2x^2=mx-m+1

ta có: đenta=(-m)^2-4*1/2*(m-1)

                  = m^2-2m+2

để P cắt d tại 2 điểm thì denta lớn hơn hoặc =0

hay m^2-2m+2 lớn hơn hoặc =0

(m-1)^2+1>hoặc =0( luôn đúng)

vậy với mọi m thì d vắt P tại 2 điểm

Thọ Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2021 lúc 14:37

Pt hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=2x-m^2-1\Leftrightarrow x^2+4x-2\left(m^2+1\right)=0\)

\(ac=-2\left(m^2+1\right)< 0\) ; \(\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm có hoành độ trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-2\left(m^2+1\right)\end{matrix}\right.\)

Ta có: \(\dfrac{1}{x_1}=\dfrac{1}{\left|x_2\right|}+\dfrac{1}{2}>0\Rightarrow x_1>0\Rightarrow x_2< 0\Rightarrow\dfrac{1}{\left|x_2\right|}=-\dfrac{1}{x_2}\)

Do đó:

\(\dfrac{1}{x_1}=\dfrac{1}{\left|x_2\right|}+\dfrac{1}{2}\Leftrightarrow\dfrac{1}{x_1}=-\dfrac{1}{x_2}+\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{-4}{-2\left(m^2+1\right)}=\dfrac{1}{2}\Leftrightarrow m^2+1=4\)

\(\Leftrightarrow m^2=3\Rightarrow m=\pm\sqrt{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2018 lúc 17:04

Đáp án C

Tọa độ giao điểm của hai đồ thị là nghiệm của phương trình

Hằng Vu
Xem chi tiết
Nguyễn Tuấn Anh
2 tháng 4 2023 lúc 15:52

 

Nguyễn Tuấn Anh
2 tháng 4 2023 lúc 16:01

Nguyễn Tuấn Anh
2 tháng 4 2023 lúc 16:06

Phúc Nguyễn
Xem chi tiết
Đặng Việt Hùng
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết